

VirtualBrainCloud
Personalized Recommendations for
Neurodegenerative Disease

Public Deliverable Report
D3.14: Integrated, open source terminology versioning and management tool
CTS2 compliant application shared with project partners

MS9: Integrated, open source terminology versioning and management tool
CTS2 compliant application shared with partners

Date May 2020

Authors
Mauro Giacomini, Sara Mora (UNIVERSITA DI GENOVA)
Stephan Gebel, Sumit Madan (FRAUNHOFER)

Petra Ritter (CHARITE)

 © VirtualBrainCloud consortium

Dissemination level: public
Website www.VirtualBrainCloud-2020.eu

This project has received funding from the European Union´s Horizon 2020
research and innovation programme under grant agreement No 826421

www.VirtualBrainCloud-2020.eu

 2 of 26

Table of content

1. Preface ... 3

2. Partners involved ... 4

3. Introduction ... 4

4. CTS2 Terminology Resources .. 5

5. Functional Profiles ... 5

6. Proposed Architecture .. 6

7. CTS2 Compliant Interface .. 7

 Preliminary CTS2 operation used .. 7

 Functional Profile Read ... 15

 Functional Profile Query .. 19

7.3.1. Single Entity Research ... 19

7.3.2. Property Research ... 20

 Functional Profile Maintenance .. 21

7.4.1. Insert a new entity ... 21

7.4.2. Update an existing entity .. 22

7.4.3. Set entity status to INACTIVE or delete an entity ... 23

7.4.4. Create a new CodeSystemVersion .. 24

7.4.5. Update an existing CodeSystemVersion .. 24

7.4.6. Close an existing Code System Version ... 24

8. Glossar ... 25

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 826421

1. Preface

A key objective of Task 3.4 “Workflows for clinical data curation and processing” and Task 3.5 “A

metadata framework for unified metadata annotations and Data Catalogues” within the wider range of

the Work Package 3: “Data Processing, Standardization and Data-FAIRification” is to deliver a semantic

framework for neurodegenerative disease, that serves as a central resource for controlled vocabularies

and shared ontologies within different TVB-Cloud work packages and includes relevant services.

Within TVB-Cloud two systems will be implemented and made available for the consortium members.

The Ontology Lookup Service (OLS) from Fraunhofer Institute for Algorithms and Scientific Computing

(SCAI) and the Common Terminology Service CTS2 approach from University of Genova (UNIGE).

The two tools are both being implemented in the TVB-Cloud solution, one was mainly developed by

Fraunhofer SCAI in the framework of the Human Brain Project (HBP) and the other - CTS2 engine - by

the University of Genoa. The CTS2 engine has been implemented previously by Healthropy srl (spin-off

of the University of Genoa). Within Virtual Brain Cloud project the University of Genoa developed an

open source compliant interface that allows the use of CTS2 engine.

For these two tools, two demos are made available at the following URLs:

• OLS, the ontology lookup service software is being used to host the Referential Ontology Hub for

Applications within Neurosciences (ROHAN), which is accessible at

https://rohan.scai.fraunhofer.de/ols/index. (for more information see delivery 3.5.1: “Complete,

updated semantic framework for neurodegeneration research documented”).

• CTS2 compliant interface: a prototype of Read, Query and Maintenance HL7-CTS2 based tool is

open to everyone in the TVB-Cloud consortium, controlled by a login system. At present, this

access can be given to any member that wants to make a trial, by writing an email to

(mauro.giacomini@dibris.unige.it). The URL address of this interface prototype is:

http://www.medinfo.dibris.unige.it/VBC_CTS2. This application corresponds to the achieved

Milestone MS9.

Figure 1: Schema of the Semantic Framework in TVB-Cloud

http://www.medinfo.dibris.unige.it/VBC_CTS2

 4 of 26

2. Partners involved

CHARITE

AMU

CODEBOX

CODEMART

EODYNE

Fraunhofer

FZJ

UNIGE

3. Introduction

The CTS2 is a standard defined by Health Level 7 (HL7) and Object Management Group (OMG) and it is

available at http://www.omg.org/spec/CTS2/1.2/. The objective of CTS2 is to provide technical and

functional specifications for the development of service interfaces based on Service Oriented

Architecture (SOA). CTS2 based interfaces allow the management, searching and reading of

terminological content, which can be defined both locally and internationally (standardized

vocabularies). The use of structured terminologies, made available thanks to this standard, makes it

possible to fully support the management of semantics in the exchange of clinical information through

independent organizations. In a context of shared semantics, CTS2 provides a modular, common and

universally implementable set of operations (put, read, update and remove), which can then be used to

manage a set of terminologies chosen by service users in their own distribution environment. CTS2

provides the terminology community with a defined set of standard interfaces that can be used to

evaluate the structure, source content and terminology tools.

1. Provides a consistent specification to develop service interfaces to manage, search and access

terminology content, either locally, or across a federation of terminology service nodes,

independent of the terminology content and underlying technological stack.

2. Structured terminologies supply the basis for information interoperability by improving the

effectiveness of information exchange within a specific domain.

3. Specifically, the structured terminologies provide a tool to organize information and to define

the information semantics using consistent and computable mechanisms.

4. In a shared semantics environment, the CTS2 provides a modular and common set of behaviors

which can be used to deal with a set of terminologies chosen by the clients.

5. The service contributes to interoperability by supporting an easy access to the foundational

elements of shared semantics.

CTS2 is a collection of:

• Models: formal descriptions of what things are and how they are invoked.

• XML Schemas: sensible and accessible descriptions of the various resources.

• Rules for constructing URL’s (or methods for SOAP/Object environment) to access this content.

http://www.omg.org/spec/CTS2/1.2/

 VirtualBrainCloud

Deliverable report – *confidential* 5 / 26

4. CTS2 Terminology Resources

CodeSystem: a classification system or a code system or an ontology or a thesaurus, etc. with

information about its publisher, release cycles, purpose, etc.

CodeSystemVersion: a version of a CodeSystem with information about the release date, release format,

contact information, etc.

EntityDescription: a description about a class or a role or an individual in a specific CodeSystemVersion.

Map: a collection of rules for transforming entities of a CodeSystem into entities represented in a second

one with information about the creators, intended use, CodeSystem involved, etc.

MapVersion: a version of a Map that carries the FROM and the TO CodeSystemVersion.

MapEntry: a definition of a set of rules that identifies how a single Entity that belongs to the FROM

CodeSystemVersion maps TO ZERO or more target Entities that belong to the TO CodeSystemVersion.

5. Functional Profiles

Maintenance: set of capabilities to create, update, delete a terminology resource through sets of

changes (ChangeSets), with specific properties to indicate the creation date, the user that changes the

terminology content, the change information, the effective date, etc.

Read: set of capabilities to read a terminology resource in a specific context (e.g. language, time,

changeset).

Query: set of capabilities to search the terminology resources with specific features in a certain context

(e.g. language, time, changeset)

Import/Export: how to load and/or retrieve content in external formats.

History: set of capabilities to get the list of all the changes applied to a specific terminology resource

and the list of all the ChangeSet applied to the whole terminology content.

 6 of 26

6. Proposed Architecture

According to the Grant Agreement (GA) the interface is open source and it can be used by everyone.

The CTS2 web service and the database are not part of this project, but they’re granted on loan for free

use by Healthropy srl to the consortium members.

Not part of this
project

Figure 2: Proposed Architecture

 VirtualBrainCloud

Deliverable report – *confidential* 7 / 26

7. CTS2 Compliant Interface

The CTS2 compliant interface is realized as a Web ASP.NET Application (.NET Framework) of Visual

Studio. This interface is connected to the HTS (Health Technology Service) powered by Healthropy srl

and it uses in a standardized way his exposed functions to read, insert and update terminological

contents into the database. The CTS2 compliant interface is composed by:

Home Page: Everyone can access this page, here some useful information about the CTS2 standard are

given.

Figure 3: Home Page of the CTS2 compliant interface

5 Pages each specific for 1 ontology. The access to these sections is regulated through a login page, so

that only authorized people that is working in that specific ontology can access the page. At present all

interested TVB-Cloud members can gain access. During the development of this project we will insert

this interface in the Virtual Brain Cloud Platform and we will define access policies.

 Preliminary CTS2 operation used

In order to correctly insert the information of each specific ontology into the database the following

CTS2 operation need to be used.

Create CodeSystem: The functional profile involved is the CodeSystem Catalog Maintenance Service.

The input parameters are:

→ ChangeSet: The URI of an OPEN change set to record the changes (Type: ChangeSetURI).

→ URI: The about URI of the catalog entry to be created (Type: ExternalURI).

→ Name: The local identifier of the catalog entry in the context of the service (Type:

CodeSystemName).

Return type is CodeSystemCatalogEntry, which has the properties listed in figure below.

 8 of 26

It is necessary to create a CodeSystem for each of the

ontologies involved in the project so: Alzheimer’s Disease

Ontology (ADO), Human Physiology Simulation Ontology

(HuPSON), Protein-Ligand Interactions Ontology (PLIO) and

Parkinson’s Disease Ontology (PDON). Other CodeSystems

will be created for each of the ontologies that are mapped

to that specific ontologies of the project.

ChangeSet is a Unique Identifier (UI) of a set of change

instructions that can potentially transform the contents of

CTS2 service instance from one state to another. It is one of

the Core Elements of CTS2 so it may be created by each of

the functional profiles. In order to make a change through a

maintenance service it is required the following sequence of

operations:

a. Create a new Change Set

b. Make one or more changes to one or more resources,

providing the URI of the created change set.

c. Update any additional provenance information on the

change set

d. Commit change set to modify the database or Rollback change set in case of errors. Rollback deletes

both the modifications of the specific change set and the change set itself.

Update CodeSystem: Update the contents of an existing catalog entry. Return type is a

CodeSystemCatalogEntry and attributes that can be updated in an existing CodeSystemCatalogEntry

are:

→ CodeSystemCategory: The category or type of resource that the code system represents.

→ OntologyDomain: The subject domain of the code system or ontology.

→ OntologyType: The nature of the content of the code system or ontology.

→ DesignedForOntologyTask: The purpose for which the code system or ontology was originally

designed.

→ HasOntologyLanguage: The formal language used to express the code system or the ontology.

→ UsedOntologyEngineeringTool: The name or URI of an ontology engineering tool.

Create CodeSystemVersion: The functional profile involved is the CodeSystem Version Catalog Entry.
The input parameters are:

→ ChangeSet

→ URI: The URI that uniquely identifies the new CodeSystemVersion (Type: DocumentURI)

→ Name: A name that uniquely identifies this version in the context of the implementation service

(Type: CodeSystemVersionName).

→ SourceAndNotation: The source and notation used in this CodeSystemVersion (Type:

SourceAndNotation).

→ VersionOf: The name or URI of the code system that this is a version of (Type: NameOrURI).

Return type is CodeSystemVersionCatalogEntry, which has the properties listed in Figure 3.

Figure 4: CodeSystemCatalogEntry Class

 VirtualBrainCloud

Deliverable report – *confidential* 9 / 26

Update CodeSystemVersion: Update an existing

CodeSystemVersionCatalogEntry.

The input parameters are:

→ ChangeSet

→ CodeSystemVersion: The name or URI of the

code system version to be updated (Type: NameOrURI).

→ Request: The parameters to be updated (Type:

UpdateCodeSystemVersionRequest).

Return type is a CodeSystemVersionCatalogEntry and

attributes that can be updated in an existing

CodeSystemVersionCatalogEntry are:

a. DefaultLanguage: The name or URI of the default

language used in this version.

b. DocumentURI: The URI of the specific

document/format where this resource was

retrieved.

c. Imports: The name or URI of a code system version

whose content is imported and “asserted by” this

CodeSystemVersion.

The UpdateCodeSystemVersionRequest function includes also attributes contained in the class Update

Resource Version Description (one of the common model elements of the class Resource Maintenance):

d. State: The state of the resource version. Resource versions can change state from OPEN to

FINAL, but not the other direction. Once a resource version description is finalized and

committed, it becomes immutable.

e. SourceAndNotation: A description of where the source of the version may be found, what

format and language it is available in.

f. Predecessor: The name or URI of the resource version that immediately preceded this version

on an evolutionary path.

g. OfficialResourceVersionId: An official label or identifier that was assigned to this version by its

publisher.

h. OfficialReleaseDate: Information about the source, format, release date, version identifier, etc.

of a specific version of an abstract resource.

i. OfficialActivationDate: The date that this version of the resource is stated by its publishers to go

into effect.

Create Named Entity Description / Create Predicate Description / Create Object Property Description:

The functional profile involved is the Entity Description Maintenance Service. The input parameters are:

→ ChangeSet

→ EntityID (optional): The entity code and/or namespace identifier of the entity to be created

(Type: ScopedEntityName).

Figure 5: CodeSystemVersionCatalogEntry Class

 10 of 26

→ DescribingCodeSystemVersion: The URI or local identifier of the CodeSystemVersion that this

entity description is both described in and described by (Type: NameOrURI).

Return type is NamedEntityDescription.

In Figure 4 is shown an extract of the entities that is necessary to create in order to correctly manage

the ADO ontology.

Figure 6: ADO Classes

Update Entity Description: Once Entities have been created, they can be updated to add attributes. The

most important that will be used to add specific properties to each element in the ontologies are:

→ AlternateEntityID: Alternative unique identifiers that reference the about entity in the context

of describing CodeSystemVersion. The “namespace” names the context from which the name

(or code) is derived.

→ Definition: An explanation of the intended meaning of a concept. An EntityDescription may have

multiple definitions, each derived from a different source, represented in a different language

or having a different purpose.

→ Example: An example of an instance or instances of the referenced entity, typically written for

human consumption.

→ Note: A note or comment about the history, status, use, or other description about the

EntityDescription.

→ Property: Additional “non-semantic” (annotation) assertions about the entity being described

that do not fit into the other categories.

→ SourceStatements: A DirectoryURI that resolves to the list of statements that were used in the

assembly of this description.

→ Parent: The set of direct “parents” asserted by DescribingCodeSystemVersion. It is the

responsibility of the service to determine what predicate(s) represent “parent/child”

relationships. Typically “parent” is associated with “rdfs:subClassOf” in the OWL/RDF world.

 VirtualBrainCloud

Deliverable report – *confidential* 11 / 26

→ Parents: A DirectoryURI that resolves to the list of direct “parents” asserted by

DescribingCodeSystemVersion. This returns the parent elements above.

→ Ancestors: A DirectoryURI that resolves to the transitive closure of the “parents” relationship(s).

The primary purpose for this attribute is to provide a handle for subsumption queries. As an

example, to determine whether Class X was a subclass of Class Y, one would query whether the

EntityReference to Y was a member of X.ancestors.

→ Children: A DirectoryURI that resolves to the list of direct “children” asserted by

DescribingCodeSystemVersion. As with parent, it is the responsibility of the service to

determine what predicate(s) represent “parent/child” relationships.

→ Descendants: A DirectoryURI that resolves to the transitive closure of the “children”

relationship(s). The primary purpose for this attribute is to provide a handle for subsumption

queries. As an example, a second way to determine whether Class X was a subclass of Class Y,

one would query whether the EntityReference to X was a member of Y.descendants.

→ EntityType: The set of type(s) which the EntityReference is an instance of. Because this is a

terminology service, EntityType must include one of owl:Class, owl:Individual, rdf:Property, or

skos:Concept, although it may carry many other types as well.

→ Instances: A DirectoryURI that resolves to the list of entities that asserted to be instances of the

type represented by about URI. This element is present only if resolution will return a non-

empty set.

→ EquivalentEntity: An entity that has been determined to be equivalent to the about entity in the

context of the assertions made by DescribingCodeSystemVersion.

The first attribute that should be considered is the EntityType. An example can be found in the ADO

ontology which has both:

a. Object Property:

Figure 7: Example of Object Property from ADO

 12 of 26

b. Class:

As we can see in the examples both types of entities have properties. The difference between the

NamedEntityDescription created with the three before mentioned operation is mainly the EntityType.

• Create Named Entity Description.EntityType = owl:Named.

• Create Predicate Description.EntityType = rdf:Property. This type can be used for example to

identify the Annotation Properties.

• Create Object Property Description.EntityType has count =2 in this case: owl:ObjectProperty

and rdf:Property. This type can be used for example to identify the Object Properties.

The other attributes that should be analyzed more in detail are the Class ones:

→ Predicate: The name or URI of the property predicate.

→ Value: The target(s) of the property. Note that this can only represent the literal format of the

property. The details about the original property will be found in the CorrespondingStatement if the

CTS2 implementation supports the statement profile.

So, the attribute value of a property is of Class Statement Target and it can be of three types:

• Literal Target: when the statement type is LITERAL. It can be used for that properties like the ID

of the entity.

• Entity Reference Target: the URI and optional namespace/name when the target type is ENTITY.

It can be used when a property refers to another entity, for example of type owl:ObjectProperty.

• Resource Target: when the statement type is RESOURCE.

An entity may have more than 1 value for the same predicate, in this case it is necessary to create a

List of StatementTarget containing both items and then assign it to property.value, while

property.predicate remains unchanged.

→ CorrespondingStatement: a link to the original statement from which this Property is derived. Will

only be present in CTS2 implementations profile.

→ PropertyQualifier: An assertion whose subject is the assertion in the property instead of the

property subject.

Figure 8: Example of Class from ADO

 VirtualBrainCloud

Deliverable report – *confidential* 13 / 26

Below are reported some practical examples of the use of properties:

Literal Target:

1. Single Literal Target:

Figure 9: Example of a Single Literal Target from ADO

2. More than 1 Literal Target:

Figure 10: Example of more than 1 Literal Target from ADO

 14 of 26

Entity Reference Target:

1. Single Entity Reference Target:

2. More than one Entity Reference Target:

Figure 12: Example of more than one Entity Reference Target

The input parameters of the function Update Entity Description are:

→ ChangeSet

→ Request: The set of fields to be changed (Type: UpdateEntityDescriptionRequest).

→ EntityID

→ DescribingCodeSystemVersion

Figure 11: Example of a Single Entity Reference Target

 VirtualBrainCloud

Deliverable report – *confidential* 15 / 26

Below are detailed some choices examples of CTS2 attributes that have been made to insert the

ontology information in the database.

Attributes that cannot be modified and must be chosen during the creation phase:

• Entity.EntityID.Name = source name : class name. For example NDDUO:Clinical. It was not possible

to choose only the class name because it was not unique within the different sources, an example

of that is Outcome.

• Entity.EntityType = “owl:Named”. It can’t be modified because it is a consequence of the function

that generates the NamedEntityDescription.

Attributes that can be changed through the Update Entity Description Request:

• Entity.Definition = “isDefinedBy”

• Entity.Note = “comment”

• Entity.Example = “example”

(For each of them can be specified the language for example.)

• Entity.Parent = “subClassOf”

• Entity.Property = Any other property of the class, for example “Synonym”, “label”, “disjoinWith”,

etc.

 Functional Profile Read

 Classes:

Figure 13: Example of the tree visualization of ADO Classes

 16 of 26

Properties:

Figure 14: Example of the tree visualization of ADO Properties

The first part of this page of the interface let the user visualize the entities of a specific

CodeSystemVersion. The CTS2 operations that are needed to reach this task are different depending on

the state of the CodeSystemVersion. It is necessary to remember that if the state is FINAL the version is

closed it can’t be modified anymore, otherwise if it is OPEN then it can be modified.

The versions of a specific CodeSystem may also be identified by these Version Tags:

• Production: the CodeSystemVersion with state “open” (it will be only one)

• Current: the last CodeSystemVersion with state “final”

• Previous: the CodeSystemVersion with state “final” immediately before the current

• Obsolete: all the other CodeSystemVersions with state “final” before the previous

The list of version tags can be obtained using the function:

Get Supported Tag: Function that returns the set of version tags known to the service. All services must

recognize the CURRENT tag, although the interpretation is service specific.

By default, the interface will show the CodeSystemVersion with version tag “production”, so the one

with state “open”. Then if the user wants to have a look to the previous versions, he will be able to do

that in the history page. In order to get the last version, the following operation should be used:

Get Code System Version for Code System: Retrieve the specific CodeSystemVersion details for the

specified CodeSystem from the service. The input parameters are:

→ CodeSystem

→ Tag: The version tag of the resource. Defaults to the URI for CURRENT if not supplied (Type:

NameOrURI).

 VirtualBrainCloud

Deliverable report – *confidential* 17 / 26

→ QueryControl

→ Context

Return type is CodeSystemVersionCatalogEntry.

Otherwise, if the user wants to get the list of the previous versions of that specific CodeSystem it can be

done thanks to the DirectoryURI that references the known versions of the specific CodeSystem and it

can be found in the attribute “versions” of the specific CodeSystem.

For each CodeSystemVersion, a TreeView containing the entities is shown. Entities are grouped in levels

of deepness so the first that is presented is the parent of all the others, then the user can visualize

children of each parent. To get the list of all entities of a specific CodeSystemVersion the following

operations have to be used in series:

Get All Entities: Function that returns an URI that ends with EntityDescription?Id[]=All

Restrict to Code System Version: Function used to restrict the research to the entities of a specific

CodeSystemVersion. The input parameters are:

→ Directory: A DirectoryURI that resolves to a set of EntityReferences (Type: EntityDirectoryURI). In

this case it needs to be valued with the URI obtained as a result of the function “get all entities”.

→ CodeSystemVersion: The name or URI of a code system version used to restrict the set of entities in

directory (Type NameOrURI).

Return type is EntityDirectoryURI.

Resolve as List: Returns an Entity List containing the set of EntityDescriptions identified by the

EntityDirectoryURI obtained at the previews step. The input parameters are:

→ Directory: A directoryURI that resolves a set of EntityReferences (Type EntityDirectoryURI).

→ ResolveOnlyCodeSystem: The name or URI of a Code System. If absent all the elements and

attributes will be returned.

→ QueryControl: It is a parameter that controls the ordering, timeout and query behavior.

→ Context: It is a parameter that controls the language, date, time and other contextual variables.

→ ReturnFilter: A list of zero or more component references. The returned list of entities will contain

only the required elements and attributes plus any elements or attributes named in the filter.

To visualize the details of specific entity it is necessary to click on the specific TreeNode. In order to fill

the details panel with all the information of the specific Entity it is necessary to use the following

operation:

Restrict: This function returns a DirectoryURI that references the set of all elements represented by

directory that match the criteria specified in filter. The input parameters are:

→ Directory

→ MatchAlgorithm (optional): The name or URI of the match algorithm to use when selecting values.

The default value if the parameter is not supplied is “CONTAINS” - the supplied match value appears

anywhere in the target. (Type: NameOrURI). The list of supported matchalgorithms can be obtained

by using the function:

 18 of 26

Get Supported Match Algorithm: A Match Algorithm is a predicate that determines whether an entity

resource quality for membership in a set based on supplied matching criteria. Example of match

algorithms are “equals” and “contains”.

→ MatchValue (optional): The value to be used in comparison. The structure and format of matchValue

depends on the specific matchAlgorithm. As an example, a “startsWith” algorithm would be plain

text, a “regularExpression” algorithm would have a regular expression, while an “exists” algorithm

would have nothing in the matchValue argument. (Type: String)

→ FilterComponent (optional): The name or URI of a property or model element to be filtered. If

omitted, all properties are searched. (Type: EntityNameOrURIList)

The restrict function in this context is used to find the entity whose name is the same of the string

specified by the user. So, the following choices should be done:

• Directory: the URI of the specific CodeSystemVersion, in example the ADOV1

• MatchAlgorthms: in this case the “equals” is required

• MatchValue: the string specified by the user

• FilterComponent: it should be built by using the:

Get Supported Model Attribute: The set of model attributes that can be referenced in filter

instances for the given service implementation. In this case it is necessary a model attribute

that limit the research on the entityIDName.

In the left-top part of the page there is a textbox and a search button, this way the user is given the

possibility to search for a SPECIFIC ENTITY in the TreeView which will automatically expand to show that

item.

In figure below is represented a sample of the class details visualization.

Figure 15: Class Details Visualization

 VirtualBrainCloud

Deliverable report – *confidential* 19 / 26

 Functional Profile Query

Figure 16: Functional Profile Query Interface

This page gives the user the possibility to select a subset of all the EntityDescriptions of a specific

CodeSystemVersion via various restriction criteria, the intersection, union and difference of these sets

and the ability to render the result of these queries in different formats. It also provides tools to

determine the presence or absence of EntityReferences in these sets.

7.3.1. Single Entity Research

This first operation gives the user the possibility to get the list of all the classes that contains a certain

word. To reach this goal the functions that need to be used are the same of the read process, but the

very important change is in the input parameters of the Restrict function.

In this case the needed match algorithm is the “contains” one.

Figure 17: Example of Single Entity Research

If the user wants to see all the details of that specific entity, he can click on the buttonfield “Show

Details” of the gridview, this way a panel with all the information will appear at the top of the page:

 20 of 26

Figure 18: "Show Details" panel

Otherwise if the user wants to see all the children of that specific entity (if present) he can click on the

button “Visualize” in the column “Children”.

7.3.2. Property Research

This second operation gives the user the possibility to find all the entities that have a specific property,

in example a definition, a comment, an example.

Figure 19: Property Research example

Even in this case it is possible to click on “Show Details”.

 VirtualBrainCloud

Deliverable report – *confidential* 21 / 26

 Functional Profile Maintenance

This section contains the functions that allow the user to modify the CodeSystem. The list of functions

is:

1. Insert a new entity

2. Update an existing entity

3. Set entity status to INACTIVE or delete an entity

4. Create a new Code System Version

5. Update an existing Code System Version

6. Close an existing Code System Version

7.4.1. Insert a new entity

The complete set of operations that should be executed to insert a new entity have been described in

detail in the previous paragraphs. To insert a new entity, it is necessary to determine the CodeSystem

and CodeSystemVersion that it belongs to, its source, its name and its parent (if it has one, so this

argument is optional). This way the entity will immediately appear in the TreeView.

User should press on the icon plus to open the specific panel. It is necessary to insert ALL the information

that are required (*) in the panel, otherwise an error will appear, and the button save will be disabled.

CodeSystem and CodeSystemVersion are determined by the system, the first one as a consequence of

the ontology page where the user is accessed and the second one is the CURRENT version. The source

is necessary because the entity name may not be unique in the entire ontology, but it is unique in its

own source. Once ALL the mandatory information (*) is set the user can press button SAVE.

NB: These are the attributes that could not be changed in the future (except for the parent one), so if

the user inserts something wrong, he must delete the entity and insert it again, that because of the rules

of the CTS2 standard.

Figure 20: Functional Profile Maintenance

 22 of 26

Figure 21: Insert new entity

7.4.2. Update an existing entity

The complete set of operations that should be executed to update an existing entity have been

descripted in detail in the previous paragraphs. In order to reach the update section, the user has to

choose the entity he wants to update typing the beginning of the name in the textbox, find the desired

entity in the gridview and then click on “Show Details” in the corresponding gridview row. Once the

entity details panel is open two icons appear: edit and remove.

If the user clicks on the edit icon the specific panel will appear. As we can see in figure below, in the first

part the user can update the attributes and the literal properties of the entity while in the second part

he can update the object properties. At the moment a maximum of three values can be assigned for

each property but in the future, it can be extended, if necessary.

Figure 22: Update / Remove entity

 VirtualBrainCloud

Deliverable report – *confidential* 23 / 26

7.4.3. Set entity status to INACTIVE or delete an entity

If the user wants to remove an entity from the list of entities that can be used of a specific

CodeSystemVersion two options are proposed: the first one that should be used if an entity is no more

valid for example from one version to the next one; the second if the entity doesn’t belong to the specific

CodeSystemVersion because it has been added wrongly.

1. Each entity has the property “EntryState” that can be valued with ACTIVE or INACTIVE. To

change the status from ACTIVE to INACTIVE the following function should be used:

Update Changeable Metadata: Update the metadata for a change set and return an image of

the updated resource. This operation may alter the state of the service. The input parameters

of this function are:

→ ChangeSet

→ EntryID: The entryID of the resource whose state is to be updated. (Type: PersistentURI)

→ Status (optional): The name or URI of valid workflow status. (Type: NameOrURI)

→ EntryState (optional): The new state of the resource (ACTIVE or INACTIVE). (Type:

EntryState)

→ EffectiveDate: The new effective date of the resource. (Type: DateAndTime)

→ ChangeNotes: The new change notes of the resource. (Type: OpaqueData)

→ ChangeSource: The new change source of the resource. (Type: SourceReference)

All the input parameters Status, EntryState, EffectiveDate, ChangeNotes, ChangeSource

constitute an element of type UpdateChangeableMetadataRequest.

Return Type of the function is: Changeable.

2. The operation which is used to physically delete an entity is:

Figure 23: Modal edit single entity

 24 of 26

Delete Changeable: Remove the changeable resource from the service. The input parameters

are:

→ ChangeSet

→ ChangeableResource: The image of the resource to remove. (Type: Changeable)

In this case the resource that needs to be removed is a NamedEntityDescription.

 There is no return type in this case.

The specific entity can be deleted by clicking on the icon of trash and this operation is irreversible.

The status can be modified trough the update panel that can be opened by clicking on the edit icon.

7.4.4. Create a new CodeSystemVersion

The complete set of operations used to reach this goal have been described in detail in the previous

paragraphs. If the user wants to create a new CodeSystemVersion, it is necessary to set to FINAL the

state of CURRENT one. This operation is available only when there is no CodeSystemVersion open.

7.4.5. Update an existing CodeSystemVersion

The complete set of operation that should be executed and the attributes that can be updated have

been descripted in detail in the previous paragraph.

7.4.6. Close an existing Code System Version

This operation is a subclass of the Update because to close a CodeSystemVersion it is necessary to

Update it and set the attribute “state” to FINAL. It is a simplification to allow the user to perform the

operation more easily.

Figure 24: Modal delete entity

 VirtualBrainCloud

Deliverable report – *confidential* 25 / 26

8. Glossar

ADO - Alzheimer’s Disease Ontology

ASP.NET - Active Server Pages terminology using .NET languages

CSV – Code System Version

CTS2 – Common Terminology Service Release 2

DB – Database

GA - Grant Agreement

HBP – Human Brain Project

HL7 - Health Level 7

HTS - Health Technology Service

HuPSON – Human Physiology Simulation Ontology

OLS - The Ontology Lookup Service

OMG – Object Management Group

Figure 25: Modal close CSV

 26 of 26

OWL – Web Ontology Language

PLIO – Protein–Ligand Interaction ontology

PDON - Parkinson’s Disease Ontology

RDF – Resource Description Framework

ROHAN - Referential Ontology Hub for Applications within Neurosciences

SCAI - Fraunhofer Institute for Algorithms and Scientific Computing

SOA - Service Oriented Architecture

SOAP – Simple Object Access Protocol

UI - Unique Identifier

UNIGE - University of Genoa

URI - Uniform Resource Identifier

URL – Uniform Resource Locator

XML – Extensible Markup Language

