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Abstract:

INTRODUCTION: Numerous studies have collected AD cohort datasets. To achieve

reproducible, robust results in data-driven approaches, an evaluation of the present

data landscape is vital. 

METHODS: Previous efforts relied exclusively on metadata and literature. Here, we

evaluate  the  data  landscape  by  directly  investigating  nine  patient-level  datasets

generated in major clinical cohort studies. 

RESULTS: The  investigated  cohorts  differ  in  key  characteristics,  such  as

demographics and distributions of AD biomarkers. Analyzing the ethnoracial diversity

revealed  a  strong  bias  towards  white/caucasian  individuals.  We  describe  the

measured data modalities and compare them across cohorts. Finally, the available

longitudinal data for important AD biomarkers is evaluated. All results are explorable

at https://adata.scai.fraunhofer.de

DISCUSSION: Our evaluation exposed critical limitations in the AD data landscape

that  impede  comparative  approaches  across  multiple  datasets.  Comparing  our

results  to  those  gained  by  metadata-based  approaches  highlights  that  thorough

investigation of real patient-level data is inevitable to assess a data landscape.

1. Background:

In the field of  Alzheimer’s  disease (AD) research,  numerous cohort  studies have

been conducted and their collected data build the basis for a plethora of research

projects.  However,  each  of  these  studies  only  reflect  patients  of  a  particular

subpopulation  defined  by  inclusion  and  exclusion  criteria.  This  is  becoming
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specifically  relevant  in  the  context  of  the  increasing   popularity  of  data-driven

approaches and machine learning [1]: After analyzing a single cohort, it is mandatory

to demonstrate that results are reproducible in independent, external data originating

from distinct  cohort  studies.  Furthermore,  it  is  essential  to  conduct  comparative

analyses  across  datasets  in  order  to  assess whether  the  observed  patterns  are

robust [2]. Such systematic data-driven approaches are, however, hampered by the

fact  that  patient-level  data  is  often  difficult  to  access  or  entirely  inaccessible.

Moreover,  we  have  limited  knowledge  about  how  the  distinct  cohort  datasets

available  in  our  field  compare  to  each  other  on  a  qualitative  (e.g.  overlap  of

measured variables) as well  as quantitative level (e.g.  values encountered in the

data) [3,4]. Thus, in order to leverage the full potential of collected patient-level data,

it is important to characterize the clinical AD data landscape in detail. 

Evaluating a data landscape involves organizing and comparing datasets in order to:

1)  qualitatively  assess  their  collected  data  modalities  and  variables,  and  2)

quantitatively describe the demographics of the study population and distributions of

measured variables. Such characterization provides a detailed overview of the data

accessibility and supports the design of research projects and future cohort studies.

Finally, evaluating a data landscape inherently exposes potential flaws with regard to

interoperability  between  existing  datasets  and  underrepresentation  of  important

disease or population characteristics. 

In the AD field, previous studies have attempted to establish a comprehensive view

of the AD data landscape as well as demonstrate how cohort datasets relate to each

other. For example, the European Medical Information Framework (EMIF), collected

metadata of  AD cohort  studies by providing data owners with  a questionnaire in

which  they could  specify  the  variables  contained in  their  datasets.  The resulting
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metadata  are  presented  through  the  EMIF-Catalog  [5].  Similarly,  the  ROADMAP

project generated an overview of clinical outcomes and data modalities that were

collected in several European AD cohort studies [6]. By analyzing metadata (partially

originating from the EMIF-Catalog), ROADMAP created the ROADMAP Data Cube,

a web application that shows the availability of AD related outcomes in a selected set

of European dementia cohorts (https://datacube.roadmap-alzheimer.org). Lawrence

et al., on the other hand, opted for a literature-based approach to assess the AD data

landscape. The authors reviewed publications corresponding to AD cohort datasets

and gathered the contained information [7]. 

All  of  the  above-mentioned  undertakings  attempted  to  evaluate  the  AD  data

landscape solely on the basis of metadata and literature, without investigating the

underlying patient-level data. However, reviewing study protocols can only explain

the original design of a given study and thereby neglects unforeseen changes in

procedures  or  participant  recruitment  throughout  study  runtime.  The  alternative

approach is a patient-level and data-driven evaluation of the AD data landscape,

which  is  a  tedious  and  time-consuming  endeavor.  The  first  hurdle  of  such  an

approach is gaining access to a sufficient number of cohort datasets. Data access

typically  requires  completing  an  application  procedure  with  numerous  legal

requirements and considerations. If access is granted, intensive manual curation and

investigation of data follows. Although difficult to establish, a comprehensive data-

driven  view  on  the  AD  data  landscape  is  crucial,  since  reliance  exclusively  on

metadata assumes that these metadata correctly describe the underlying dataset

and  that  this  dataset  is  complete.  In  contrast,  a  patient-level  and  data-driven

evaluation  1)  is  not  subject  to  these  assumptions,  2)  allows  for  a  quantitative

investigation of important cohort statistics and 3) illustrates the amount and quality of
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the data accessible to the field. 

In this work, we traced down, accessed, investigated, and compared nine of the

major clinical cohort study datasets available in the AD field. Instead of solely relying

on metadata and /  or  literature,  we assessed the current  AD data landscape by

curating  and  investigating  the  accessible  patient-level  cohort  datasets.  Here,  we

comprehensively  describe the acquired data and show which data modalities we

found in the datasets as well  as their overlap with other studies. Additionally,  we

assessed the longitudinal follow-up on biomarker-level and demonstrated to what

extent current AD data is covering the progression of the disease. Furthermore, we

compared the content we observed in these datasets with the reported findings of

metadata-based approaches [5,7]. Finally, we made all results available through an

interactive web-portal  (https://adata.scai.fraunhofer.de),  such that  researchers  can

explore the AD data landscape generated on our investigated datasets. 

2. Methods:

2.1 Investigated Cohorts

We aimed to acquire as many major AD cohort studies as possible to allow for a

thorough investigation of the data landscape. We only considered datasets that were

downloadable, hereby excluding data portals with restricted data access from our

investigations. Most of the datasets we accessed were shared after completing an

official  data  request  process.  We  applied  for  access  to  18  distinct  AD  cohort

datasets. Until submitting this work for publication, we were granted access to nine

(Table 1).

Table 1. The investigated AD cohorts and their references.
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Cohort Consortium Reference

A4 Anti-Amyloid Treatment in Asymptomatic 
Alzheimer’s Disease

[8]

ADNI The Alzheimer’s Disease Neuroimaging 
Initiative

[9]

ANMerge† AddNeuroMed [10]

AIBL The Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing

[11]

EMIF-1000 European Medical Information Framework [12]

EPAD v1500 European Prevention of Alzheimer's Dementia [13]

JADNI Japanese Alzheimer’s Disease Neuroimaging 
Initiative

[14]

NACC The National Alzheimer's Coordinating Center [15]

ROSMAP The Religious Orders Study and Memory and 
Aging Project

[16]

NOTE:  †:  ANMerge  is  a  new  version  of  the  AddNeuroMed  dataset  pending

publication. It includes the Maudsley BRC Dementia Case Registry at King’s Health

Partners cohort and the Alzheimer’s Research Trust UK cohort. [17]

It is important to be aware that not all of these studies followed the same design nor

goals.  Each study  enforced  its  own recruitment  criteria  and  enrolled  participants

following distinct selection processes. While some aimed for a case-control setting

and included a substantial amount of AD patients into their cohort, others deliberately

excluded them to focus on early disease progression. Thereby, the cohort datasets

are all subject to inherent biases.

2.2 Generating the Summary Statistics

To illustrate the content of the datasets, we characterized the demographics of each

cohort  and  described  the  encountered  statistical  distributions  of  important  AD

biomarkers. The demographic variables we considered are: participant age, sex, and
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completed years of education. Additionally, we assessed the diversity of ethnoracial

groups in our acquired AD cohorts, since it is known that ethnoracial factors may

impact  AD and  related  findings [18].  The  AD biomarkers  we  compared  between

cohorts are motivated in the Supplementary Text.

For numerical variables, we describe the encountered distributions using the 25%,

50%,  and  75%  quantiles  of  the  raw  measurements.  For  categorical  ones,  we

describe the proportion of study participants falling into its respective categories. In

some datasets, single variables were only reported numerically given they placed

within a defined value range (e.g. 400-1700). If the measurement appeared to be

outside of this range, the exact number was not reported but replaced with a cut-off

(e.g. “>1700”). To allow for calculations, we considered these values to be equal to

the mentioned cut-off (here, 1700). 

2.3 Generating the Data Availability Map

While  establishing  a  data  landscape,  it  is  of  high  interest  to  identify  the  data

modalities that were measured in the underlying studies as well as to compare their

overlaps.  However,  assessing  the  availability  of  data modalities  in  clinical  cohort

datasets is not straightforward. It involves intensive and meticulous manual curation

of the acquired datasets and thereby, the definition of applicable curation criteria

specifying  under  which  circumstances  each  data  modality  is  considered  as

“available”. Furthermore, it is often necessary to define a gradual categorization to

represent the degree of availability. For example, exclusively measuring two specific

single nucleotide polymorphisms (SNP), is not equal to conducting a genome-wide

genotyping  of  individuals.  Similarly,  distributing  only  normalized  brain  volumes

summed over both hemispheres holds less information than providing the underlying
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raw  MRI  images.  The  latter  would  enable  researchers  to  process  the  images

according to their needs, while the former impedes interoperability to other datasets

due  to  differences  in  employed  image  processing  pipelines.  This  could  hamper

conducting certain analyses like systematic comparisons across cohorts or validation

approaches.

To enable a meaningful comparable assessment of the availability of data modalities,

we established criteria for categorizing the availability of each modality into three

discrete stages  (Supplementary Table 1): stage 0) no data were available for the

respective  modality,  stage  1)  data  were  partially  available,  and  stage  2)  more

complete data or unprocessed raw data were available.

2.4 Investigating Longitudinal Follow-Up Across Studies

To assess how far existing cohort datasets cover the important time dimension of

AD, we conducted a thorough investigation of the longitudinal follow-up performed in

the acquired studies. For each cohort, we evaluated how many participants were

assessed at each follow-up visit  and implicitly  analyzed the subsequent  drop-out

over study runtime. Since not all measurements were performed at each visit and not

every  individual  participated in  all  sample  collections,  we further  focused on the

follow-up  and  coverage  of  important  AD biomarkers.  Determining  the  amount  of

available  longitudinal  data  per  biomarker  provides  an  estimate  on  how  much

information we can exploit in order to model, and ultimately understand patterns of

disease progression. 
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3. Results:

3.1 Investigation of the AD Data Landscape

Altogether,  we  investigated  data  from  nine  studies  comprising  a  total  of  60004

assessed study participants. Table 2 shows how these participants were distributed

among the analyzed cohorts. With NACC being the exception (n = 40858), all studies

recruited individuals in the low thousands (n = ~1200 to 3600). According to their

diagnosis,  participants  could  be  separated  into  three  groups:  cognitively  healthy

controls,  mild  cognitive  impaired  (MCI)  patients,  and AD patients.  To  file  such a

diagnosis,  most  studies applied the NINCDS-ADRDA diagnostic  criteria [19].  The

fact that diagnosis criteria are aligned across most datasets significantly increases

the interoperability between them, since AD follows the same semantic description in

context of these studies. Depending on each study’s goals, the recruitment process

focused  on enrolling  more  or  less  individuals  falling  into  any  of  these  diagnosis

groups. 

While no data is shared through our web-portal, information on how to access these

datasets can be found at https://adata.scai.fraunhofer.de/cohorts.
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Table 2: Description of the investigated cohorts. 

NOTE: Number of diagnosed
subjects does not always add up to N, since patients with different dementia diagnoses (e.g. Lewy-bodies or frontotemporal dementia) were excluded.
N: Total number of participants.  CTL/MCI/AD: Number of participants with the respective diagnosis at study baseline.  2+ visits: Number of study
participants for whom data for at least two time points is available. Follow-up Interval: Approximated regular time interval between participant visits.
*: Longitudinal data has been collected but is not released yet. †: Recruited only cognitively healthy participants.
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3.2 Characterization of the Cohorts

Investigation of the cohort demographics revealed considerable differences between

key  demographic  characteristics  of  the  acquired  cohorts.  EPAD,  for  example,

recruited  a  comparably  young  and  primarily  non-symptomatic  cohort,  while

participants  of  AddNeuroMed  and  ROSMAP  were  significantly  older  (Table  3).

Across all cohorts, the age range spans roughly from 60 (lowest 25% quantile) to 85

years (highest 75% quantile). Theoretically, this opens the opportunity to construct a

pseudo-continuum of 25 years of disease history. Furthermore, in most studies we

observed the general tendency that more female than male participants enrolled into

the studies.  ROSMAP illustrates an extreme case,  recruiting predominantly  nuns

from  religious  orders,  explaining  the  high  number  of  female  study  participants

(72.8%).  Overall,  most  individuals included in  the AD cohort  studies  were  highly

educated (~ 14 years on average). As has been pointed out previously by Whitwell

et al., a high level of education can act as cognitive reserve possibly concealing a

prodromal manifestation of AD. Numerous demographic differences found between

studies may result from distinct recruitment criteria which, again, mirror the individual

study goals. While differences in recruitment criteria lead to a broader sampling of

the AD population, they reduce the direct comparability between datasets because

they  inevitably  introduce  bias  into  the  data.  One  key  example  is  recruitment

specifically for participants with AD risk factors (e.g.  APOE genotype). This could

significantly bias the patterns exhibited in the data in comparison to another dataset

with lower amount of APOE ε4 positive participants.
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Table 3: Distribution of demographic variables and key AD biomarkers encountered in each cohort. 

NOTE: Shown are the 25%, 50% and 75% quantile of numerical variables at baseline. Categorical variables are given as proportion of participants
falling into one respective category. APOE e4 %: Proportion of participants with at least one APOE e4 allele. Hippocampus: Hippocampal volume. A-
beta, tTau, pTau: Collected from CSF samples. *: NACC values are given as proportion of “abnormal observations”. 
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To  further  highlight  one  potential  bias  in  AD  data,  we  analyzed  the  ethnoracial

diversity  encountered  in  the  investigated  AD cohorts  (Figure  1).  An  aggregated

analysis  of  all  acquired  datasets  demonstrates  that  the  vast  majority  of  these

recruited individuals come from a white/caucasian background (83.9%). The second

largest group were black/African descendents with 11.6%, followed by participants of

Asian heritage with 2.3%. Here, we would like to point out that these findings are

heavily influenced by the study location and the number of enrolled participants per

study. Since the majority of the studies have been conducted in the USA, their locally

exhibited  ethnoracial  diversity  overshadows  signals  from  European  cohorts.

However, the analogous plots for each European cohort show not only a similar, but

even  more  extreme  tendency  towards  white/caucasian  individuals  (EPAD:  99%

white; AddNeuroMed: 98,5% white; see https://adata.scai.fraunhofer.de/ethnicity). 

As expected, the ethnoracial composition in the investigated cohorts heavily relies on

the  diversity  of  populations  from  which  the  participants  have  been  recruited.

Nonetheless,  our  results  elucidate  that  there  is  a  tremendous  bias  towards

white/caucasian  in  AD  datasets  and  a  severe  underrepresentation  of  other

ethnoracial groups, which, in turn, could be problematic for developing personalized

treatments.
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Figure 1: Combined ethnoracial diversity found across the investigated AD cohorts.

3.3 Availability of Data Modalities

The selection  and  amount  of  data  modalities  measured  in  a  cohort  study  often

depend  on  the  study’s  aims  and  available  funding.  Thus,  often  only  partially

overlapping  sets  of  data  modalities  are  assessed  in  distinct  cohort  studies.  To

analyze,  which  data  is  available  in  our  investigated  cohorts  and  to  explore  the

overlap  between  them,  we  assessed  the  grade  of  availability  per  data  modality.

Therefore, we manually curated each dataset according to our previously described

criteria (Supplementary Table 1). 

In Figure 2, we show an overview of the data modalities and their availability score

in  all  acquired  cohort  datasets.  Commonly assessed throughout  all  studies  were

demographic variables (e.g., participant age, sex, and education), as well as clinical

assessments,  (e.g.,  MMSE).  In  these  two  modalities,  almost  all  studies  were

assigned the availability score 2. CSF biomarker measurements were found present

in all datasets but AddNeuroMed, in which no CSF samples were taken. With regard
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to  post-mortem /  autopsy  data,  ROSMAP contains  a  detailed  collection  of  post-

mortem  data,  ranging  from  simple  measurements  such  as  brain  weight  to

comprehensive brain  proteomics  and transcriptomics.  Although numerous studies

conducted  structural  MRI,  the  data  shared  with  us  were  sometimes  limited  to

processed  MRI  features  (e.g.  brain  volumes).  In  our  case,  only  ADNI  and

AddNeuroMed granted access to the raw images. However, we would like to note

that EPAD aims to provide raw images when the necessary infrastructure for image

data distribution has been set up. 

Although the purpose of this section is to provide a comprehensive overview on the

availability  of  data  per  modality,  we  would  like  to  emphasize  that  the  presented

results of this analysis are strongly dependent on our defined curation criteria, and

different criteria could lead to different results. Additionally, all investigated datasets

could potentially hold more information than we presented here. Due to our premise

of exclusively looking into those patient-level data that have been shared with us, it is

possible that we missed modalities or resources which were not shared in the first

place  (raw  MRI  images  being  an  example).  The  results  can  be  explored  at

https://adata.scai.fraunhofer.de/modality.
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Figure 2: Availability of data modalities scored based on the defined criteria. The
criteria  are  explained  in  Supplementary  Table  1.  PET: Positron  emission
tomography. Blood Transcrip.: Transcriptomic data gathered from blood samples.

To establish how our observations of data availability differed from results gained by

relying solely on metadata, we compared our findings to the metadata presented in

the  EMIF  catalog  [5].  Only  four  of  our  investigated  studies  were  listed1:  ADNI,

AddNeuroMed,  EMIF,  and  EPAD.  Although  the  majority  of  our  findings  are  in

concordance with the EMIF-catalog, deviations between metadata and the real data

exist. We encountered variables in the datasets which are reported as absent in the

catalog (e.g. Global Deterioration Scale in AddNeuroMed), or were not listed at all.

Other variables and even modalities are reported to be present, yet could not be

found in the respective dataset. For instance, the catalog states that post-mortem

brain  autopsy  was  performed  in  AddNeuroMed,  which  we  could  not  find  any

evidence for.

Similar observations were made when comparing our findings with the review by

1 Accessed on 2th of February 2020
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Lawrence  et  al.  [7].  Here,  for  example,  the  reported  longitudinal  follow-up  of

AddNeuroMed is significantly shorter than we observed in the data (i.e., 12 months

versus the 84 months in the data). Additionally, the number of participants with at

least two visits is not concordant with the data we obtained (i.e., 378 versus the 1254

participants in the data).

These results show that there are two types of contradictions between the metadata

assessments and our data-driven investigation:  type 1 describes variables in  the

datasets  which were  reported to  be missing according to  the  metadata  sources.

From this type of contradiction, we can conclude that approaches relying solely on

metadata  and  literature  potentially  suffer  in  accuracy  when  estimating  the  real

content available in cohort datasets. Contradiction type 2 is that metadata sources

reported a variable to be present, while we were not able to find it in the underlying

data. Type 2 contradictions do not lead to the same conclusion as type 1, since it

may be possible that the respective variables have simply not been shared with us.

However, it is arguable how practical correct metadata is if the data it describes is

not  available  itself.  We  believe  that  the  presented  results  and  their  conclusions

highlight  the  importance  of  data  access  and  curation  when  assessing  a  data

landscape.

3.4 Disease Manifestation across Cohorts

To evaluate how severely patients from each cohort have been affected by AD, we

compared the distributions of both cognitive outcomes and key biomarkers for the

cognitively affected patient subgroups (i.e. participants with MCI or AD diagnosis).

Table 3 shows the distributions for each complete cohort including healthy controls,

MCI and AD patients.  Analogous tables per diagnosis subgroup can be found at
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https://adata.scai.fraunhofer.de/cohorts.

According  to  the  MMSE scores,  AD patients  from AIBL (Quantiles:  15,  20,  25),

AddNeuroMed (Quantiles: 16, 21, 25) and NACC (Quantiles: 16, 21, 25) showed the

worst cognitive performance. ADNI (Quantiles: 21, 23, 25) contained patients with

fewer cognitive symptoms. The CDR sum of boxes scores (CDR-SB) slightly shifts

the perspective. Here, AddNeuroMed is the most affected cohort with its 25%, 50%

and  75%  quantiles  of  the  CDR-SB scores  being  4,  6  and  9  respectively.  AIBL

patients scored 3.5, 5, 7, which slightly contradicts the image painted by the MMSE

scores. Again, ADNI shows the least cognitive symptoms with its CDR-SB quantiles

being 3, 4.5, 5. 

A  comparison  of  raw  biomarker  measurements  between  cohorts  proved  to  be

impossible, since encountered values are on different scales and may be subject to

batch  effects.  Thus,  we  analyzed  how  much  measurements  diverged  from their

respective control population in each cohort (Supplementary Text).

The  prerequisite  for  comparative  approaches  involving  biomarker  measurements

across datasets is an alignment of their underlying data models (i.e. making data

interoperable).  In  our  analysis,  each study had defined  its  own data  model  and

variable names differed between them. This forced us to individually map variables

to their corresponding counterparts in other studies to enable comparisons in the first

place  (e.g.  combine  “lh_hippo_volume”  and  “lh_hippo_volume”  and  map  to

“Hippocampus”).  Another  difficulty  is  that  numerous  datasets  reported  values  of

equivalent variables in different ways. For example, CSF biomarker measurements

are reported to be either normal (0) or abnormal (1) in NACC, while other studies

provide numerical values, which themselves were capped at different thresholds in
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some  of  those  studies  (e.g.  “>1700”).  All  these  factors  led  to  a  severe  lack  of

interoperability between datasets which significantly limits comparative approaches

and restricts them to more standardized variables like clinical assessment scores. 

3.5 Longitudinal Follow-up 

The majority of the investigated studies have collected longitudinal data in the form

of repeated measurements. The intervals of data collection differed across studies

(Table 2). Figure 3A displays the drop-out of study participants over time relative to

the size of the cohort. In this analysis, participants were considered if at least one

measurement  was  taken  at  the  respective  month.  However,  an  individual’s

participation in some assessments does not imply that all biomarkers values were

acquired for the same individual on all visits. Thus, we additionally investigated the

amount  of  study  participants  for  which  single  important  AD  biomarkers  were

measured over time (Figure 3). Plots for all of the investigated biomarkers can be

found at https://adata.scai.fraunhofer.de/follow-up.

One example is CSF amyloid beta for which  Figure 3B  displays the longitudinal

coverage.  Comparing  Figure 3B with  Figure 3A demonstrates that CSF samples

were, if at all, only taken from a small fraction of participants consistently over time.

Summed  over  all  the  investigated  cohorts,  only  273  (0.5%)  participants  have

undergone CSF sampling at baseline and again 3 years after. In contrast to CSF,

cognitive assessments follow the drop-out curves quite closely (Figure 3C). While

these findings are not surprising given the invasiveness of CSF sample collection,

they raise severe concerns regarding the robustness of statistical analysis results

obtained from CSF data. In turn, this again elucidates that comparative longitudinal

approaches in the AD field are mainly limited to cognitive assessments or suffer from
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small sample size.

Figure 3: Longitudinal follow-up of A) at least one variable per participant,  B) CSF

amyloid beta, and C) MMSE scores.
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4. Discussion:

In this work, we established an overview of the AD data landscape by investigating

patient-level data from nine major clinical AD cohort studies. Our results demonstrate

that the individual datasets vary with respect to key characteristics, such as number

of enrolled participants per diagnosis, demographic composition, and distribution of

important AD biomarkers. Assessing the ethnoracial diversity in the cohorts exposed

a severe bias towards white/caucasian individuals since this group is predominantly

overrepresented. To appraise availability of modalities in each study, we categorized

each  modality  based  on  the  relative  presence  of  data  in  each  cohort.  Another

important  remark  of  our  findings  is  the  limited  number  of  longitudinal  follow-up

measurements for important AD biomarkers like CSF amyloid beta. Finally, we made

all  results  explorable  through  an  interactive  web  application  that  can  help

researchers to identify cohort datasets suitable for their research.

Our  analysis  exposed  major  challenges  that  severely  impede  comparative

approaches on AD cohort data. While there has been work on standardizing data

collection [20,21] as well as on guidelines for defining an AD related data model [22],

we still experience a deficit in interoperability across AD datasets. The investigated

cohort  datasets  neither  followed  a  common  naming  system  for  variables,  nor

represented values of the same measurement in equal manner. On top of that, some

studies only shared processed values instead of the underlying raw data. This further

impedes interoperability since differences in applied processing pipelines inevitably

introduce  systematic  biases  into  the  data.  One  promising  approach  to  increase

dataset interoperability could be a comprehensive, AD-specific common data model

that would facilitate the alignment and mapping of variables for acquired datasets.
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As  previously  mentioned,  the  abundance  of  longitudinal  CSF  data  was  limited

throughout all acquired datasets. It is possible that because CSF sample collection is

an invasive procedure [23], a substantial number of participants did not provide CSF

samples.  Although  CSF  biomarkers  support  disease  diagnosis,  it  remains

questionable  whether  longitudinal  analyses of  CSF data  can produce statistically

robust results given the low sample sizes available. Thus, the development of less

invasive approaches like blood biomarkers could pose a more promising alternative

for longitudinal assessments.

There  are  multiple  reasons  that  could  have  caused  the  observed  differences  in

demographic characteristics  and disease risk factors  across studies,  namely,  the

study  goal,  the  employed  recruitment  criteria,  or  the  distinct  approaches  for

participant acquisition. Potentially, these observed differences could severely hamper

the  comparison  and  validation  of  findings  across  disparate  cohorts  since  such

systematic differences can significantly influence the patterns and trends exhibited in

the data. Up to now, it remains unclear how far this limits comparative approaches

on AD data in practice and further investigations are required to ensure that results

generated on AD datasets are robust and reproducible across multiple cohorts.
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