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1. Background 

The overarching goal of The VirtualBrainCloud (TVB-Cloud) is personalized prevention and treatment of 

dementia. To achieve generalizable results that help individual patients, the VirtualBrainCloud 

integrates the data of large cohorts of patients and healthy controls through multi-scale brain simulation 

using The Virtual Brain (or TVB) simulator. There is a need for infrastructures for sharing and processing 

health data at a large scale that comply with the EU general data protection regulations (or GDPR). The 

VirtualBrainCloud consortium closes this gap, making health data actionable. Elaborated data protection 

concepts minimize the risks for data subjects and allow scientists to use sensitive data for research. 

 

A key objective of our TVB-Cloud tasks “Workflows for clinical data curation and processing” and “A 

metadata framework for unified metadata annotations and Data Catalogues” under the overarching 

topic of “Data Processing, Standardization and Data-FAIRification” is to deliver a semantic framework 

for neurodegenerative diseases (NDD), that serves as a central resource for controlled vocabularies and 

shared ontologies to access and use them within different TVB-Cloud work packages.  

 

2. Introduction 

Within the Virtual Brain Cloud (TVB-Cloud) project, we are building a reference infrastructure for sharing 

and processing Health and Biomedical research data, specifically data in the domain of NDD.  

One milestone on the way to succeed is described in the present report D3.16 “Data catalogue with 

harmonized annotations at project”. Our goal is to implement FAIR data handling principles (Findable, 

Accessible, Interoperable, Reproducible) through homogeneous data annotations based on shared 

semantics and through a data catalogue that is accessible to all project partners. The data catalogue 

contains harmonized annotations of all data sets used in this project and can be searched in an 

integrative viewer. A core deliverable of TVB-Cloud is the uniform harmonization across all clinical data 

sets using homogeneous annotations provided by shared semantics such as the Clinical Trials Ontology 

(CTO) by the end of year 2. 

Fraunhofer SCAI developed an infrastructure and software tools that are able to fulfill this milestone. 

The system contains four main pillars: the DKAN Clinical Data Repository, AData Viewer, the Common 

Clinical Data Model (CCDM) and the Clinical Data Viewer (Fig. 1).  
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Figure 1: Infrastructure for Clinical Data Management 

 

The Fraunhofer SCAI DKAN system enables the storage of clinical study data in a safe environment in 

compliance with FAIR data handling principles. The AData Viewer1 captures information on study related 

variables (attributes) with focus on a (mostly) semantic mapping of specific parameter ranging from 

ethnicity to diagnostics. The system enables a systematic view on the data and variables and 

comparisons across different studies (Birkenbihl et al., 20202). The Common Clinical Data Model (CCDM) 

enables the mapping and alignment of attributes (see Table 5) on the level of individual patient data 

and the subsequent uploading of the individual patient data based on the mapping. Here alignment and 

mapping of the attributes is most complex as parameter often contains study specific measurements 

and value ranges. Based on the attribute alignment, patient level data could be uploaded in the CCDM. 

Due to the harmonized data inside the CCDM, this data base could be used for cross study analysis of 

metadata using the Clinical Data Viewer that is developed in the IDSN3 project by project partners from 

University Hospital Bonn.  

Here we describe the setup of the whole system with focus on two major Alzheimer’s Disease (AD) 

related studies i.e., ADNI (Alzheimer’s Disease Neuroimaging Initiative) and ANM (AddNeuroMed).  

 

 
 
1 https://adata.scai.fraunhofer.de/ 
2 Birkenbihl C. et al. Evaluating the Alzheimer’s disease data landscape. Alzheimer’s Dement. 2020, Volume 6; Issue 1 
https://doi.org/10.1002/trc2.12102 
3 IDSN (Integrative Data Semantics for Neurodegenerative research) project is a German Federal Ministry of Education and Research (BMBF) 
funded project. More details are available at https://www.idsn.info/en/ 

https://adata.scai.fraunhofer.de/
https://doi.org/10.1002/trc2.12102
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3. Partners involved 

FAIR-data principles implementation is led by Fraunhofer SCAI. They are responsible for the 

harmonization of data using semantic frameworks and the implementation of the FAIR principles in TVB-

Cloud. Partner UNIVIE provides ethical and legal considerations to be applied in these processes, which 

are in the responsibility of the respective data controllers. 

4. Description of work performed 

4.1. Collecting relevant clinical data from AD studies (data acquisition) 

We acquired major AD cohort studies (Table 1) to set up a data catalogue that represents a dataset 

landscape of AD related studies.  

The first challenge was gaining access to a sufficient number of cohort datasets. Data access usually 

requires completing an application procedure with numerous legal and ethical requirements. If access 

is granted, manual curation, harmonization and investigation of data follows. Although difficult to 

establish, a comprehensive data-driven view on the AD data landscape is crucial. 

Relevant AD cohort studies were chosen to allow for a thorough investigation of the data landscape in 

relation to measured parameters and used attributes as shown below (Table 1).  

 
 

Table 1: AData cohort studies and related key information (table taken from https://adata.scai.fraunhofer.de/). Note: ANMerge 

which was used in the AData-Viewer is a new version of the AddNeuroMed dataset4. 

 

 
 
4 Birkenbihl C. et al., ANMerge: A comprehensive and accessible Alzheimer's disease patient-level dataset. J Alzheimers Dis. 2020 Dec 1. 
doi:10.3233/JAD-200948. 

https://adata.scai.fraunhofer.de/
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Most of the datasets we accessed were shared after going through an official data request process. 

Ultimately, Fraunhofer SCAI (mostly restricted to single persons and not accessible for the whole group) 

were granted access to nine distinct AD cohort datasets (Table 1). Datasets from other studies can be 

integrated in future. Datasets from other studies can be integrated in future.  

 

4.2. Storage of study data in the DKAN Clinical Data Repository 

The Fraunhofer DKAN platform contains clinical cohort data from several studies, currently ADNI 

(Alzheimer’s Disease Neuroimaging Initiative), ANM (AddNeuroMed), and EPAD (European Prevention 

of Alzheimer's Dementia), as shown in Figure 2. Additional cohort datasets imported to the AData viewer 

(described in the section 4.1.) will be integrated into the DKAN platform in the near future.  

 

Figure 2: Fraunhofer DKAN cohort platform 

The Fraunhofer DKAN system has been proved as an appropriate, easy-to-use platform to provide study 

data including metadata annotations. Note: The Fraunhofer DKAN system in house system that can only 

be accessed from internal server presumably access authorization is given before. 

For additional information on DKAN see supplementary. 

 

4.3. Generation of an AD Data Catalog with harmonized annotations using the 
AData Viewer 

A comprehensive data-driven view on the AD data catalog (AData landscape) including collection and 

the categorization of annotations is the basis for the generation of a project specific data catalog with 

harmonized annotations.  

Major AD cohort studies were chosen to allow for a thorough investigation of the data landscape in 

relation to measured parameter and used attributes. Most of the datasets we accessed were shared 
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after going through an official data request process. Ultimately, Fraunhofer SCAI got access to nine 

distinct AD cohort datasets (Table 1).  

We investigated major AD cohort datasets with the aim of characterizing their underlying data, assessing 

the quantity and availability of data, and evaluating the interoperability across these distinct cohort 

datasets.  

This approach captures information on study related variables (attributes) with focus on a (mostly) 

semantic mapping of specific parameter ranging from ethnicity to diagnostics. The system enables a 

systematic view on the data and variables and comparisons across different studies. 

The web-application (AData Viewer https://adata.scai.fraunhofer.de/) allows for exploration of the AD 

data landscape and helps researchers to identify the most suitable datasets for their projects. It provides 

an overview of the AD data landscape by investigating clinical data from nine major clinical AD cohort 

studies (Fig. 3).  

 

 

Figure 3 Screenshot of the AData Viewer (https://adata.scai.fraunhofer.de/) 

Evaluating a data landscape involves organizing and comparing datasets in order to qualitatively assess 

their collected data modalities and variables, and quantitatively describe the demographics of the study 

population and distributions of measured variables. Such characterization provides a detailed overview 

of the data usability and accessibility. Finally, evaluating a data landscape inherently exposes already 

potential flaws with regard to the interoperability between existing datasets.  

https://adata.scai.fraunhofer.de/
https://adata.scai.fraunhofer.de/
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It is important to be aware that not all selected studies followed the same design nor goals. Each study 

enforced its own recruitment criteria and enrolled participants following distinct selection processes. 

While some aimed for a case-control setting and included a substantial amount of AD patients into their 

cohort, others deliberately excluded them to focus on early disease progression. Thereby, the cohort 

datasets are all subject to inherent biases. 

For additional technical details see our public TVB-Cloud deliverable: “Paper manuscript describing the 

initial characterization of the studies, the equivalence of their variables the summary statistics”5 

(Birkenbihl et al., 2020). 

By applying the described procedures, the addition of further data sets provided by TVB-Cloud project 

partners into the existing database could be easily performed, enabling the compilation and 

harmonization of study variables and comparison against the integrated AD data landscape.  

This approach makes FAIR data principles actionable and enables comparison or aggregation of clinical 

studies. Here a common clinical data model was generated, the ground for interoperability and re-

usability. 

 

4.4. Generation of a common clinical data model for harmonisation of clinical data 

One promising approach to increase dataset interoperability is the creation of a comprehensive, AD-

specific common clinical data model. Such a data model supports the alignment and mapping of 

variables by providing easy-to-follow guidelines and a dedicated interface for retrospective data 

harmonization.  

The Common Clinical Data Model (CCDM) described here, enables the mapping and alignment of 

attributes on the level of individual patient data and the upload of the individual patient data based on 

the mapping. One challenge in harmonizing data from multiple sources is achieving a machine-readable 

integration of variables including their parameters. Due to specific study designs and individual 

modelling of recorded measurements, both the composition and encoding of variables (e.g., data types, 

value ranges or units) differs largely between datasets. A harmonization of given data down to 

formatting can be performed via the CCDM, thus supporting further cross-study analyses (see section 

6: “Clinical Data Viewer”). Moreover, the CCDM approach enables structured analysis of captured meta 

data, i.e., a comparison of individual studies’ data landscapes. 

 

4.4.1. Description of the common clinical data model (overview) 

By its sub-structure, the CCDM reflects the tripartition into a) a core set of internal variables, b) a 

collection of mappings dedicated to particular external data resources as well as c) the data itself. These 

three levels refer to each other and are shortly described in the following sections. See Appendix for 

details, including a UML diagram.  

The integration of new sources of clinical data into the CCDM requires two subsequent multi-step 

processes, preferably executed by a data steward. An overview is shown in Fig. 4. 

 
 
5 https://cordis.europa.eu/project/id/826421/results 
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Figure 4: Overview on the data integration process. External sources get integrated by both meta data and data. Integrating 
elements of external data models or dictionaries requires a formatted mapping onto CCDM-internal variables (red box). If 
necessary, the data model’s core (gray) might be extended with new variable declarations (black box). When integrating actual 
data (blue box) from the respective sources, each data point will be checked for compliance with the modelled rule sets (core 
+ mappings) before integration into a clinical data handling backend (orange), communicating with a mongoDB instance 
(green). Where necessary, data will be transformed according to the source-specific mapping set. Finally, integrated data 
appears clean and queryable via a RESTful API, e.g. supplying the Clinical Data Viewer with data. 

 

Integration of data from various sources starts with mapping the given meta data onto the common 

clinical data model. Resulting assignments and rules get implemented automatically in the central data 

handling unit (clinical backend). Similarly, data will be loaded into this central, database-driven 

environment; here, tabular data will be parsed, filtered and quality controlled according to the setup 

source-specific declarations encoded in data model’s core and mapping sets. Both integration processes 

are supported by dedicated web interfaces (see 4.4.2 Description of the Data-Steward), each 

implemented as a form-driven file uploads (bulk import) or stepwise dialog-driven wizards. 

 

4.4.2. Description of the Data-Steward 

This service provides a user interface for several features described before such as editing and updating 

the CCDM in relation to new studies that will be added and the final data upload for further (meta)-

analysis using software tools such as the Clinical DataViewer (see section 6).  
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Figure 7: Data-Steward entry page. Screenshot taken from http://idsn.dzne.de/data-steward.  

 

The Data-Steward services supports mapping and alignment of the attributes, definition of new 

attributes (“Datamodel Wizard”), visualization of the study related attributes and their relations 

(“Visualization”) and the upload of data in the CCDM (“Data-upload”). In fact, the data model could be 

downloaded in .xlsx format (“Download”), edited e.g., by adding or mapping new study related 

attributes and uploaded back to update the system (“Datamodel upload”) (Figure 8). 

 

 

Figure 8: Data-Steward pages for up- and download of the model. Download datamodel as .xlsx or .owl file (A). The .xlsx file 

could be used as template for curation of new data sets and subsequent upload into the model using the upload module 

“Datamodule upload” (B).  

 

A key feature of the Data-Steward is the graph visualization of the data model (Figure 9). Edges in that 

graph represent the connections between different sources and its attributes as well as the mappings 

between those attributes. 

http://idsn.dzne.de/data-steward
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Figure 9: Graph Visualization of the Data Model. The “CDR_Total” variable from the ADNeuroMed study and the CDGLOBAL 

variable from ADNI study are mapped to CCDM variable “Global Clinical Dementia Rating Scale”, which is part of the 

“Neurophysiological test scores” in CCDM.  

 

An additional functionality in the Data-Steward (“SHOW MORE IN OLS”; right-click context menu on 

nodes) enables sematic normalization of concepts to EBI – OLS6 (Fig. 10). Within a TVB-Cloud version of 

the CCDM this function could be linked to Fraunhofer SCAI OLS containing TVB-Cloud specific ontologies 

for concept harmonization. 

   

Figure 10: Concept harmonization via OLS  

 
 
6 https://www.ebi.ac.uk/ols/search?q=sources_ADNI 

https://www.ebi.ac.uk/ols/search?q=sources_ADNI
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5. Results 

5.1. AD Data Catalogue (AD Data Landscape) 

Data collected in cohort studies lay the groundwork for a plethora of Alzheimer’s disease (AD) research 

endeavors. Therefore, the AD cohort data landscape was systematically sketched out. 

Former undertakings attempted to evaluate the AD data landscape solely on the basis of metadata and 

literature, without investigating the underlying patient-level data. However, reviewing study protocols 

can only explain the original design of a given study and thereby neglects unforeseen changes in 

procedures or participant recruitment throughout study runtime. The most comprehensive and 

granular approach is a patient-level and data-driven evaluation of the AD data landscape, which is a 

tedious and time-consuming endeavor and should better be performed by the data owner.  

In this part of the work, nine of the major clinical cohort study datasets available in the AD field were 

traced down, accessed, investigated, and compared. We comprehensively describe the acquired data 

and show which data modalities were identified in the datasets as well as their overlap within the studies 

investigated. More detailed analysis e.g., on the longitudinal follow-up on biomarker-level in order to 

explore to what extent current AD data cover the progression of the disease are described in TVB-Cloud 

public deliverable “Evaluating the Alzheimer’s Disease Data Landscape”, Birkenbihl et al., 20207.  

In addition, we made all analysis and results available through an interactive web-portal 

(https://adata.scai.fraunhofer.de), such that researchers can explore the AD data landscape, which 

correspond to a data catalogue on available AD related studies, with respect to the investigated 

variables.  

The prerequisite for working across multiple datasets is interoperability with regard to their features. 

This aspect includes the availability of features, the same naming conventions and comparable 

representations. While we explored the representations of important features in the "Cohorts" section, 

here we focus on naming conventions and to conceptually map similar features to their corresponding 

counterparts in other datasets. This work is not a complete mapping of all features available in these 

cohorts. It serves as an overview on the current state of dataset interoperability and showcases that 

there is no common data model for dementia datasets in use. This hinders data-driven approaches 

across cohorts substantially in the summary of the mapping  

In the following, some detailed results are provided. The selection and amount of data modalities 

measured in a cohort study often depend on the study’s aims and available funding. Thus, often only 

partially overlapping sets of data modalities are assessed in distinct cohort studies. To analyze, which 

data is available in our investigated cohorts and to explore the overlap between them, we assessed the 

grade of availability per data modality. Therefore, each dataset was manually curated according to 

defined criteria (Supplementary Table 1). 

Figure 11 shows an overview of the data modalities and their availability score in all acquired cohort 

datasets. Commonly assessed throughout all studies were demographic variables (e.g., participant age, 

sex, and education), as well as some clinical assessments such as MMSE (Mini-Mental State 

Examination). 

 
 
7 https://cordis.europa.eu/project/id/826421/results 

https://adata.scai.fraunhofer.de/
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Figure 11: The heatmap shows the availability scores we assigned to denote how completely a certain data modality is 
available and shared in the investigated cohort datasets. The corresponding criteria for score assignments are shown in 
supplementary table. PET: Positron emission tomography, CSF: Cerebrospinal fluid, MRI: Magnetic resonance imaging, 
Family, Blood Transcrip.: Transcriptomic data gathered from blood samples (Figure taken from 
https://adata.scai.fraunhofer.de/). 

Table 2 shows a section of the variable mappings from all studies investigated. Comprehensive 

information on all mapped variables is given in the AData Viewer 

(https://adata.scai.fraunhofer.de/feature_comparison) 

 

Table 2: Screenshot of the Mapping Table for clinical parameter. Comprehensive information for all variables is available 
under https://adata.scai.fraunhofer.de/feature_comparison.  

https://adata.scai.fraunhofer.de/
https://adata.scai.fraunhofer.de/feature_comparison
https://adata.scai.fraunhofer.de/feature_comparison
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The same information on mapped variables from studies investigated in relation to different modalities 

such as clinical, demographics, lifestyle or comorbidities is visualized in Figure 12 which provides an 

overview on availability and pairwise relations of clinical parameter within the investigated studies. 

Figure 12 is a screenshot taken from https://adata.scai.fraunhofer.de/feature_comparison. The AData 

Viewer website provides an inactive view on all harmonized modalities.  

 

 

Figure 12: Overview on availability and relation of clinical parameter within the investigated studies. Screenshot taken from 
https://adata.scai.fraunhofer.de/feature_comparison. The website provides an interactive view on all modalities 
investigated. 

 

Although the purpose of the work is to provide a comprehensive overview on the availability of data per 

modality, the presented results of this analysis are strongly dependent on our defined curation criteria, 

and different criteria could lead to different results. Additionally, all investigated datasets could 

potentially hold more information than presented in the current version of the AData Viewer. The AData 

Viewer is an ongoing project that will be further updated and substantiate by new features and the 

addition of new data and datasets.  

https://adata.scai.fraunhofer.de/feature_comparison
https://adata.scai.fraunhofer.de/feature_comparison
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Detailed analyses are described in the AData Viewer and in TVB-Cloud public deliverable “Evaluating the 

Alzheimer’s Disease Data Landscape”, Birkenbihl et al., 20208. Here we show an example on deviation 

of cognitively impaired patients from healthy controls in the different cohorts. 

To evaluate how severely patients from each cohort have been affected by AD, we compared the 

distributions of both cognitive outcomes and key biomarkers for the cognitively affected patient 

subgroups (i.e., participants with Mild Cognitive Impairment (MCI) or AD diagnosis). Table 3 shows the 

distributions for each complete cohort including healthy controls, MCI and AD patients. Detailed data 

per diagnosis subgroup are given in Table 4. Comprehensive information on all modalities investigated 

can be found at https://adata.scai.fraunhofer.de/cohorts. 

 

Table: 3: Overview on the cohort studies included in AData Viewer. Number of recruited participants and key information on 
the respective study design is given. Additionally, links are provided which facilitate access to the underlying datasets. 
Screenshot taken from https://adata.scai.fraunhofer.de/. 

 

According to the MMSE scores, AD patients from AIBL (Quantiles: 15, 20, 23), AddNeuroMed (Quantiles: 

16, 21, 25) showed the worst cognitive performance. ADNI (Quantiles: 21, 23, 25) contained patients 

with fewer cognitive symptoms. The CDR sum of boxes scores (CDRSB) slightly shifts the perspective. 

Here, AddNeuroMed is the most affected cohort with its 25%, 50% and 75% quantiles of the CDRSB 

scores being 4, 6 and 9 respectively. AIBL patients scored 3.5, 5, 7, which slightly contradicts the image 

painted by the MMSE scores. Again, ADNI shows the least cognitive symptoms with its CDR-SB quantiles 

being 3, 4.5, 5, (Table 4). 

 
 
8 https://cordis.europa.eu/project/id/826421/results 

https://adata.scai.fraunhofer.de/cohorts
https://adata.scai.fraunhofer.de/


© VirtualBrainCloud | public report  

                                  16 of 37 

 

 

Table 4: Demographic characteristics of the cohorts. Distributions of important Alzheimer’s disease biomarkers at study 
baseline. Distributions of demographic and biomarker values are described using the 25, 50 and 75% quantiles of the raw 
measured values. To make absolute values of biomarker measures more comparable, we additionally report the deviation 
between the healthy control group of one respective cohort and a selected participant subgroup of the same study (i.e. all, 
healthy, MCI and AD). This deviation is given as the quantiles received when evaluating the raw value quantiles under the 
empirical cumulative distribution function (ECDF) of the control group of the respective cohort. Table 4A and 4B show results 
from control group and AD group, respectively. Screenshot taken from https://adata.scai.fraunhofer.de/. 

 

A comparison of raw biomarker measurements between cohorts proved to be impossible, since 

encountered values are on different scales and may be subject to batch effects. Thus, we analyzed how 

much measurements diverged from their respective control population in each cohort.  

The prerequisite for comparative approaches involving biomarker measurements across datasets is an 

alignment of their underlying data models (i.e., making data interoperable). In this analysis, each study 

had defined its own data model and variable names differed between them. This forced us to 

individually map variables to their corresponding counterparts in other studies to enable comparisons 

in the first place (e.g., combine “lh_hippo_volume” and “rh_hippo_volume” and map to 

“Hippocampus”).  

https://adata.scai.fraunhofer.de/
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Another difficulty is that numerous datasets reported values of equivalent variables in different ways. 

For example, CSF biomarker measurements are reported to be either normal (0) or abnormal (1) in 

NACC (National Alzheimer's Coordinating Center Study), while other studies provide numerical values, 

which themselves were capped at different thresholds in some of those studies (e.g., “>1700”). All these 

factors led to a severe lack of interoperability between datasets which significantly limits comparative 

approaches and restricts them to more standardized variables like clinical assessment scores. 

Our evaluation exposed critical limitations in the AD data landscape that impede comparative 

approaches across multiple datasets. Comparing our results to those gained by metadata-based 

approaches highlights that thorough investigation of real patient-level data is inevitable to assess a data 

landscape. 

In summary, assessing the availability of data modalities in clinical cohort datasets involves intensive 

and meticulous manual curation of the acquired datasets and thereby, the definition of applicable 

curation criteria specifying under which circumstances each data modality is considered as “available”. 

Furthermore, it is often necessary to define a gradual categorization to represent the degree of 

availability.  

Our analysis exposed major challenges that severely impede comparative approaches on AD cohort 

data. The investigated cohort datasets neither followed a common naming system for variables, nor 

represented values of the same measurement in equal manner. On top of that, some studies only shared 

processed values instead of the underlying raw data. This further impedes interoperability since 

differences in applied processing pipelines inevitably introduce systematic biases into the data. 

In contrast, a patient-level and data-driven evaluation 1) is not subject to these assumptions, 2) allows 

for a quantitative investigation of important cohort statistics and 3) illustrates the amount and quality 

of the data accessible to the field. 

A promising approach to increase dataset interoperability is the here provided and described  

comprehensive common data model that facilitates the alignment and mapping of variables for 

acquired datasets. 

 

5.2. Common Clinical Data Model 

Generating a data catalog in relation to the available AD related studies (“AD data landscape”), including 

identification and mapping by variable (attribute) name and comparing data from different studies was 

set up by the AData Viewer and described in sections 4.3. and 5.1.  

As pointed out there, a common data model that would facilitate the alignment and mapping of 

variables for acquired datasets is a promising approach to increase dataset interoperability. 

Comparability and interoperability is a major issue, also within FAIR data handling, when comparing 

clinical datasets. Therefore, a comprehensive harmonization down to single patient data is necessary.  

Here we describe the Common Clinical Data Model (CCMD) that was developed for mapping and 

harmonization of patient level data from diverse clinical trials to enable cross studies analysis, including 

automatic analysis performed by computer.  

Initially, the system was set up within the IDSN project (https://www.idsn.info/de/idsn.html). Here, the 

primary aim was the integration of the multi-centric DZNE study ‘DELCODE’, the DESCRIBE patient 

https://www.idsn.info/de/idsn.html
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registry and analogous clinical routine data from local hospital IT systems, thereby generating a basic 

set of general clinical trial related attributes such as patient ID or Sex; ethnicity and a core set of 

attributes (variables) related to dementia research ranging from “father has dementia” to “Global 

Dementia Rating Scale”, according to exemplary needs of the clinical research community.  

As a proof of concept for the usability of the system within TVB-Cloud, in order to enable the integration 

of diverse types of NND-related studies in particular the datasets in TVB-Cloud, we initially mapped two 

international dementia studies; namely the Alzheimer Disease Neuroimaging Initiative (ADNI)9 and the 

AddNeuroMed collaboration. In difference to the AData Viewer, which also contains those two studies 

the study-related attributes were aligned to the CCDM on the level of patient data and should thereby 

become comparable and computable.  

 

 

Figure 13: Extension of the AData Viewer (A) to a common data model (B).  

 

Many clinical studies have been performed over the last years with the focus on NDD. Interoperability 

of variables is indispensable to enable comparative analysis on measured parameters. That includes 

common parameters such as age and sex as well as disease specific measurement entities such as 

MMSE. Most often only pairwise comparison between different studies (e.g., comparing new studies to 

ADNI data, Westmann et al., 201110, TVB-Cloud public deliverable “Evaluating the Alzheimer’s Disease 

Data Landscape”, Birkenbihl et al., 202011) are made (Fig. 13A), but reliable meta-analysis based on 

patient data are not possible because of missing interoperability of the data variables (e.g., Balsis et al., 

201512). Applying our CCDM, i.e., mapping variables from different studies to a common data model, 

should enable arbitrary comparisons between the integrated studies (Fig. 13B).  

The CCDM contains features that allows a semi-automated mapping of the attributes from different 

studies (see supplementary: “Description of the Common Clinical Data Model (CCDM)” for details). 

Here, mapping of study-related attributes was done manually, using the dedicated template from the 

 
 
9 Mueller S.G. et al.Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2005) 
Alzheimers Dement (N Y). 1(1):55-66. 
10 Westman, E. et al. AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe 
and North America. (2011) NeuroImage 58, 3: 818 

11 https://cordis.europa.eu/project/id/826421/results 
12 Balsis S. et al. How Do Scores on the ADAS-Cog, MMSE, and CDR-SOB Correspond? (2015) Clin Neuropsychol. 29(7):1002 
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Data-Steward that enable editing and subsequent uploading of the variable mapping to the data model 

(“bulk upload”).  

Four different possible settings need to be considered for variables mapping. First, attributes of the 

curated studies are simply equal to the attributes of the CCDM and have to be aligned by name, only. 

This is often true for basic parameters such as age, sex or patient ID, but also for disease-specific, 

standardized measurements such as the MMSE (Mini-Mental State Examination) score. Second, 

although the attributes could be semantically aligned (equal meaning), the variables encodings of the 

measurements differ from the CCDM analogues by e.g., value ranges or default units. Thus, defining an 

adequate transformation statement is necessary in order to establish a computable link between 

internal and external variables. Transformations comprise mathematical conversions (numerical 

variables), named mappings between known states (e.g., conversion from named months to their 

numerical equivalents: ‘Jan’ → ‘1’). Similarly, various encoding styles of ApoE get harmonized this way 

and assigned to basic interpretations like risk groups (high, medium, low), according to measured 

genotypes (two, one or no ApoE ε4 alleles). Third, it might be necessary to consult multiple variables 

from the data source and calculate the target value – a simple example is the patient’s age at a certain 

measurement. For instance, the age of onset of a disease could be inferred by offsetting the date of the 

first symptoms with the date of birth. Obviously, such calculations have to be carried out as post-

processing, as all necessary inputs have to be imported first. Fourth, attributes from the new study that 

is supposed to be mapped to the CCDM cannot be aligned to an existing attribute at all. The reason 

could be that the related endpoint was not covered yet by the given CCDM (e.g., NPI, Neuropsychiatric 

Inventory) or a full harmonization is principally not possible. The latter case is often true for items which 

show in detail deviating meanings (e.g., BNT, Boston Naming Test, see below), that could therefore not 

be aligned. In both cases, new attributes need to be defined, thus increasing the CCDM’s overall 

semantic coverage. 

In the first approach, we mapped 15 variables from ADNI and 13 variables from ANM to the existing 

common data model and added seven new variables for NDD-specific clinical measurements (Table 5).  
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Table 5: Attribute mapping of ANM and ADNI variables. Source attribute is from the curated dataset. Target attribute is defined 
in the data model. Newly added variables were labelled in grey. 

The importance of this mapping procedure could be exemplified by mapping of the Boston Naming Test 

(BNT), which is one of the most frequently used measures of confrontation naming for cognitive 

assessment. Originally established by Kaplan et al. in 198313, the full BNT consists of 60 drawings of 

various items that have to be named by the test person. In between, multiple short forms of the BNT 

(mostly containing 30 or 15 items) have been developed (Mack et al., 199214, Calero et al., 200215) to 

reduce cost, time, but not least stress of elderly test persons. Consequently, the test setups vary, 

especially considering declining performance of patients in the course of testing time. Generally, the 

possibility to recalculate the measurements from one assay to the other is at least questionable 

(Katsumata et al., 201516; Hobson et al., 201117). As part of the standardized CERAD test battery (Morris 

 
 
13 Kaplan E, Goodglass H, Weintraub S. The Boston Naming Test. Philadelphia, PA: Lea & Febiger; 1983 
14 Mack W.J. et al., Boston Naming Test: shortened versions for use in Alzheimer's disease. (1992) J Gerontol. 47(3):154 
15 Calero M.D. et al., Usefulness of a 15-item version of the Boston Naming Test in neuropsychological assessment of low-educational elders 
with dementia. (2002) J Gerontol B Psychol Sci Soc Sci. 57(2):187. 
16 Katsumata Y. et al., Assessing the discriminant ability, reliability, and comparability of multiple short forms of the Boston Naming Test in an 
Alzheimer's disease center cohort. (2015) Dement Geriatr Cogn Disord. 39(3-4):215. 
17 Hobson V.L. et al., An examination of the Boston Naming Test: calculation of "estimated" 60-item score from 30- and 15-item scores in a 
cognitively impaired population. (2011) Int J Geriatr Psychiatry. 26(4):351. 
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et al., 198918) which was a founding element of the initial CCDM, a 15-item BNT was integrated in the 

basic data model (‘BNT_15_SUM’) (Table 8). Although ANM and ADNI are performing a BNT, only the 

variable from ANM (‘CERAD_B_Total’) could be directly mapped to the CCDM – obviously, the respective 

values originate from CERAD battery tests, thus equal conditions. In contrast, for the ADNI variable 

mapping cannot be defined as being equal, as ADNI used a 30-item test (‘BNTTOTAL’), resulting in a 

different variable space. We therefore defined an additional variable (‘BNT_30_SUM) for the CCDM. 

Consequently, the decision whether and exactly how to merge these data is intentionally left to future 

analysts for dedicated judgement. However, values are thus semantically as well as technically 

integrated. For the same reason a second ADAS COG assay (‘ADAS_COG_13’; value range: [0:85]) has 

been added to the CCDM, as the already integrated score (‘ADAS_COG_11’) only considered 11 items 

(value range: [0:70]). Both the original ADAS11 score as well as the extended ADAS13 score are common 

in the field. In addition, a thorough evaluation of the clock drawing assay which is used in different forms 

is also necessary. 

The revised and extended data model was added to the CCDM service using the “Datamodel Bulk-

Upload” tool in the Data-Steward toolbox. The information on the new incorporated studies, the 

variables and the relation to existing variables, upper level concepts and other studies’ study variable 

could also be visualized in the Data-Steward visualization tool (Fig. 14 and Fig. 15). 

 

 

Figure 14: Screenshots from Data-Steward Tool: Features of ADNI (A) and AddNeuroMed study (B) 

 

 
 
18 Morris J.C. et al., The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological 
assessment of Alzheimer's disease. (1989) Neurology. 39(9):1159 
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Figure 15: Screenshot from Data-Steward tool: Graph Visualization of the Data Model. The “CDR_Total” variable from the 

AddNeuroMed study and the CDGLOBAL variable from ADNI study are mapped to CCDM variable “Global Clinical Dementia 

Rating Scale (‘CDR_SUM’), which is part of the “Neurophysiological test scores” in CCDM.  

 

Normalization in the CCDM goes beyond the mapping that was done by the AData Viewer, now 

comparison of different studies on the patient level is possible. With that we are able to build new 

“cohorts” over several studies or validate results based on new studies.  

Please note: based on data protection related restrictions we were not able to upload and analyze 

patient level data from ADNI or ANM to the CCDM, yet. Therefore, the results from related data analysis 

using the clinical data viewer is demonstrated with the data from IDSN-related studies from the ataxia 

field.   
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6. Demonstrator: Clinical Data Viewer 

The Clinical Data Viewer (http://idsn.dzne.de/react-viewer/) is under development in the IDSN project 

with project partners from the University Hospital Bonn.  

The aim is to display semantically integrated data from the clinical data handling backend and allow for 

user interaction. Thus, it communicates tightly with the respective API, and works on a generalizing 

concept enabling flexible front end semantics; i.e., the viewer is independent of a certain variable set, 

but communicates with the backend on available variables (by data type; e.g., maps integer and float to 

numerics, codes to categorical etc.), sending them to a set of graph elements. Thus, variables are 

selectable only where applicable, and plots’ behavior depends on the CCDM definitions. More 

important, the viewer transparently generates (clinical) concepts like patients and visits, considers the 

time dimension (e.g., links data points in X-Y scatterplots according to configurable tolerances in time; 

“time delta”), enables longitudinal analyses, the immediate definition and comparison of named sub-

cohorts from a dataset, as well as the temporary declaration of new variables, e.g. for calculating values 

(Fig. 16). While data is acquired as already harmonized sets from the backend, meta analyses across 

studies is an intrinsic feature and just limited to availability and permission (user management). 

 

 

Figure 16: Screenshot from the Clinical Data Viewer tool (draft version): One possible endpoint for handling, visualizing and 

analyzing harmonized data from the CCDM-driven clinical data backend. Data is gathered on click, variables assigned to all 

applicable plots and dimensions. Axis assignments support auto-completion. All displayed data refers to the same data pool 

(“multi-view”), thus actions like filtering on one graph (or table) influences all others. Filtering conditions and subgroup 

definitions of patients are located on the right.  

  

http://idsn.dzne.de/react-viewer/
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7. Conclusion 

Within the Virtual Brain Cloud (TVB-Cloud) project, we are building a reference infrastructure for sharing 

and processing Health and Biomedical research data, specifically data in the domain of 

neurodegenerative disease (NDD).  

One goal was to generate a data catalogue which contain harmonized annotations of all data sets used 

in this project and can be searched in an integrative viewer. 

As datasets from project partners were up to now not available to be used for the establishment of the 

system, we acquired major AD cohort studies to set up a data catalogue that represent a dataset 

landscape of AD related studies.  

While there has been work on standardizing data collection as well as on guidelines defining an AD 

specific data model, we still experience a deficit in interoperability across AD datasets. The investigated 

cohort datasets neither followed a common naming system for variables, nor represented values of the 

same measurement in equal manner. On top of that, some studies only shared processed values instead 

of the underlying raw data. This further impedes interoperability since differences in applied processing 

pipelines inevitably introduce systematic biases into the data.  

Irrespective of that, the AData Viewer developed in TVB-Cloud displays a comprehensive AD data 

landscape and a valuable tool to analyze, map and visualize all kind of modularity measured in AD-

related clinical studies. Thereby it also enables comparisons across different studies. The AData Viewer 

is under further development including the integration of new studies and additional attributes. With 

that also TVB-Cloud related studies can be integrated, analyzed, and visualized in the AData Viewer 

based on the described procedure. It should be notified that this variable based integration could be 

done on the basis of data modalities and does not necessarily need patient derived raw data. It is 

recommendable that study data owner would be the best qualified experts to do that work. 

As pointed out the analysis exposed major challenges that severely impede comparative approaches on 

the AD cohort data. The finding of common modalities across cohorts does not imply that the measured 

variables are interoperable or even comparable on a semantic level. By mapping a variety of variables 

across the datasets, we also established an overview of their interoperability. 

One promising approach to increase dataset interoperability is a comprehensive, NDD-specific common 

data model. Such a data model could support the alignment and mapping of variables by providing easy-

to-follow guidelines and a dedicated interface for retrospective data harmonization.  

To that end and in order to focus (bundle) research activities and tool development in the wider area of 

the EU research landscape, we applied the common data model that was under development at SCAI 

Fraunhofer within the IDSN project for its applicability for AD related datasets using the ADNI and 

AddNeuroMed datasets that were also analyzed in the AData Viewer.  

Focused on the assay included in neurophysiological test batteries (e.g., CERAD) or common variables 

(e.g., sex, education), we integrated more than 30 different variables into the model. Thereby, we 

realized that the detailed analysis of study-specific variables on the level of single patient raw data is 

inevitable, but also cumbersome. When analyzing the subset of variables, it became also clear that this 

work needs to be done by experienced persons, best from the data owners. Therefore, the CCDM offers 

a user interface (‘Data-Steward’) that enables a semi-automatic harmonization of the variables, not at 

least by using domain-specific ontologies that could be hosted in the Fraunhofer SCAI OLS instance. In 
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addition, the system also enables raw data upload and cross-study analyses using the ‘Clinical Data 

Viewer’ or programming environments like Jupyter.  

Based on data protection legislation (i.e., GDPR), sharing of patient data might often not be possible. 

Most components of the system presented here could be executed or implemented in the protected 

environment of the data owner allowing at least harmonization and comparison against freely 

accessible data set.  

Last, not least the system can provide support within the study planning supporting the identification 

of alignment parameter. 

Overall, the systems presented here were developed/adapted for The TVB-Cloud project and include 

the following components 

• a data catalogue on AD related studies with harmonized variables (AData Viewer),  

• a common clinical data model as a semantic framework that could be used for data 

harmonization and mapping (Data Steward), and  

• finally, for the analysis and comparison of studies the clinical data viewer.  
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8. Supplementary Information 

8.1. DKAN Clinical Data Repository 

DKAN is a community-driven, free and open-source open data platform (inspired by CKAN 

(Comprehensive Knowledge Archive Network)), that gives organizations and individuals access to 

structured information. In our case, the Fraunhofer SCAI DKAN system is an in-house platform enabling 

the storage of clinical study data in an access-restricted environment in compliance with the FAIR data 

handling principles ‘interoperability’ and ‘re-usability’. Note: This is not the clinical data repository for 

the TVB-Cloud partners due to license restrictions. Sharing of tools and risk and progression models will 

be realized via a cloud solution. 

The procedural method to import data to the platform includes mainly the following three steps: 

Creation of datasets and resources – DKAN’s data publishing model is based on the concept 

of datasets and resources. A dataset is a container for one or more resources; a resource is the actual 

“data” being published, such as a CSV table, a JSON data file, or a TIFF image. The dataset and resource 

content types in DKAN are provided by the DKAN Dataset module. 

Addition of further resources to the dataset – After creating a dataset, we’re prompted to add one or 

more data resources to it. There are three types of resources that can be added to a Dataset, depending 

on the type and location of the resource, e.g. upload files, API or website URL (e.g. a database link), and 

linked remote file. 

Adding metadata to datasets – In this last step additional metadata are added to the dataset. All these 

fields are optional, but provide valuable information about your dataset to both human visitors to the 

website and machines discovering your dataset through one of DKAN’s public APIs. Examples for such 

metadata information are Author, Spatial/Geographical Coverage Area, Spatial/Geographical Coverage 

Location, Frequency, Temporal Coverage, Granularity, Data Dictionary, Additional Info, and Resources.  

There are further optional modules to enhance DKAN platforms like Datastore, Harvester, Workflow 

and others. To conclude, DKAN allows to publish data for site visitors handled as content. Treating data 

like content makes it easier to access and take up information. Equally important is making open data 

accessible for computers (i.e. machine-readable) to interact programmatically. Both approaches for the 

data access follow the FAIR paradigm. It needs to be printed out that most of these modules are not 

applicable as clinical data often underlie data security rules that prohibits the free distribution.  

 

 

 

https://ckan.org/
https://dkan.readthedocs.io/en/latest/introduction/catalog-basics.html#datasets
https://dkan.readthedocs.io/en/latest/introduction/catalog-basics.html#resources
https://dkan.readthedocs.io/en/latest/apis/index.html
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Supplementary Table 1: Criteria used to define the availability scores for each investigated data modality.  

 

 

 

  

Demographics Blood 

Transcriptomics

Genotype Blood 

Proteomics

CSF PET

Not available Not performed

Not 

performed Not performed

Not 

performed Not performed

Sex, Age

Only processed 

data APOE

Only 

processed 

data

At least 1 

of: A-beta, 

pTau, tTau

At least 1 of: 

FDG PET, 

Amyloid PET, 

AV PET

Sex, Age, 

Education, 

Race/Ethnicity Raw data

Broad 

genotyping Raw data

A-beta, 

pTau, tTau

FDG PET, 

Amyloid PET, 

AV PET

Lifestyle Family History Comorbidities Autopsy Medication

Not available Not available Not available

Not 

performed Not available

At least 1 of: 

Substance 

consumption; 

physical 

activity; 

nutrition

Dementia state of 

biological parents

Information on at 

least 1 

comorbidity

Basic 

information 

(e.g. brain 

weight)

AD 

medication

Information on 

at least 2 of the 

above

Additional 

Information

Information on 5 ≤ 

other diseases

At least 1 

post-mortem 

omics 

dataset

Detailed 

medication
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8.2. Description of the Common Clinical Data Model (CCDM) 

The CCDM reflects by its sub-structure the separation into a core set of internal variables, a collection 
of mappings dedicated to particular external data resources as well as the data itself (suppl. Figure 1) 
These three levels refer to each other and are described in the following sections. 

 

Supplementary Figure 1: UML diagram of the CCDM. The data model core (black) consists of variables, defined by 
several attributes. Thereof, topics and umbrella terms as semantic entities are collected separately and 
referenced. Units (for numeric variables) and codes (for categorical variables) are similarly listed. For semantic 
integration of data, the main collection of variable mappings (red) is analogously supported by referenceable code 
mappings and always refer to dedicated sources. Data points (blue) being subject to semantic integration refer to 
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both core model (variables) and mappings, the latter including post-processing of loaded data according to defined 
calculations to be carried out 

 

CCDM Core 

The data model comprises a set of unequivocally/unambiguously named variables (attributes), carrying 

several properties (suppl. Tab. 2 and suppl. Fig. 2). Each variable comes with proper textual descriptions 

and a definition of the data type. Supported types are either textual (strings), numerical (integer, float), 

categorical (codes; incl. Boolean) or dates (ISO8601-formatted). All data types can be declared as 

homogenous arrays, so lists of e.g., integer values, dates or code.  

For numerical variables, default units can be defined. Although these are preferably consistent with the 

Unified Code for Units of Measure (UCUM), the ‘unit’ feature accepts custom entries, e.g. ‘points’, 

‘figures’ or ‘words’. Thereby, modeling of common clinical measures like specifically counted items in a 

neuropsychological test setup is possible. The ‘domain’ feature optionally defines legal value ranges, 

either in a [min]:[max] schema or as comma-separated lists. For variables of the ‘code’ data type, 

‘domain’ is a reference to a named collection of key-value pairs and obviously mandatory. 

 

Property Function Mandatory 

Variable Unique name (ID) ✔ 

Topic Unique parent category  

Umbrella Generalization term wrapping a variable with further, 
analogous terms (= semantically similar, but not 
identical). 

 

Variable_Description Unique variable's full text description ✔ 

Variable_Tooltip Very short description, suitable for tooltips or table 
headings 

✔ 

Datatype Possible data type [string, int, float, date, code or arrays 
of] 

✔ 

Domain Accepted range of numeric and date values (2-items 
array in Python notation; empty item is valid) or name 
of code (for categorical items) 

(✔) 

Unit Unique code expressing unit (UCUM preferred)  

Active Switch for (de-)activation ✔ 

Supplementary Table 2: Data model fields defining variables 
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Supplementary Figure 2: Variable definition in the data model template 
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Two generalization concepts conduct further semantics. Topics are hierarchically ordered, assigning 

variables to fields of interest. While various lab chemistry measurements are generated from blood 

samples, others originate from cerebrospinal fluid (CSF) - an important differentiation in 

neurodegenerative research, modeled by separate topics, which anyhow can be generalized to ‘lab 

measurements’. Meanwhile, defining umbrella terms enables to model similarity between variables, 

independent of the rigid topics hierarchy. For instance, our model knows a range of variables for the 

reporting of memory disturbances. According to study designs, these might carry additional information 

on the reporter; consequently, three variables indicate whether the patient, an attendant (usually an 

accompanying relative) or an undesignated person made the qualifying statement on experienced 

memory issues. However, in integrated analysis of data, a researcher is probably primarily interested in 

any reported occasion, which is modeled by the umbrella term ‘memory disturbance’. Similarly, 

leukocytes are counted in both blood and CSF; while the respective variables are assigned to separate 

topics, the umbrella term “leukocytes” serves as a direct link. In fact, a variable can be assigned with 

multiple umbrella terms, enabling various independent, even overlapping generalizations. 

For the sake of normalization, the CCDM can be mapped to public ontologies. Here, data model variables 

are linked to defined terms of referenceable semantic resources. Where necessary, exact partial 

definitions are possible, e.g. assigning encoded variables’ keys to particular terms. For instance, while 

the CCDM’s variable ‘sex’ knows the values ‘0’ (= ‘male’), ‘1’ (= ‘female’) and ‘2’ (= ‘other’), these are 

encoded as separate terms in NCIT: C20197 (male) and C16576 (female). Moreover, C154419 

(genderqueer), C154420 (other gender) and C154421 (transgender) fit ‘other’. For the mapping of NDD 

specific variables specific ontologies such as CTO that are hosted in the Fraunhofer OLS will be used (see 

our published report on “Complete, updated semantic framework for neurodegeneration research 

documented”19). 

Mappings 

The central mechanism for formally binding external data sources to the CCDM’s variable space is the 

mapping process. Here, declarations are set up to formally describe pair-wise relations between 

(internal) data model variables and those of the (external) resources. Transformations enable to align 

external variables with deviating value ranges or default units. These might either be a conversion 

expressed as a function call (e.g., ‘FORMULA( (EXTVAR – 100) / 10 )’) or a code mapping identifier. The 

latter reference a set of value pairs, linking external values explicitly to those of a categorical variable of 

the CCDM. 

Data 

The core principle of the CCDM is to assign every particular measurement to a) an individual (‘patient’) 

and b) a point in time. Effectively, the data points to be integrated are quintuples of character-separated 

values according to suppl. Tab. 3, providing one record per row. Thereby, data points follow the 

principles of the EAV/CR model (Nadkarni et al. 199920): while the person and time information assemble 

an entity (E), measurements compile from the recorded value (V) and the variable assigned to – the 

latter referred to as attribute (A) in EAV. Variables as metadata are defined separately and assigned 

 
 
19 https://cordis.europa.eu/project/id/826421/results 
20 Nadkarni P.M. Organization of heterogeneous scientific data using the EAV/CR representation. (1999) J Am Med Inform Assoc. 6(6):478 



© VirtualBrainCloud | public report  

                                  32 of 37 

(related) to topics (classes). In contrast to the EAV/CR model, the CCDM’s topics are less complex than 

classes, with less relations in parallel. 

 

Field (Examples) Content 

[SITE:]PID 
(128b, LocX:12345) 

Person’s unique ID in the given context; might be prefixed by a 
location descriptor SITE, e.g., for multi-center studies 

TIMESTAMP 
(2012-08-19, 1971, 2016-04, 2018-
06-12T10:09:13) 

Time point of the measurement’s recording in ISO 8601 format 
([YYYY]-[MM]-[DD]T[hh][mm][ss]); the minimum representation is 
YYYY 

VARIABLE 
(DIAG_ICD10, MMSE_SUM, 
HAS_APOE4) 

The name of the variable, either out of the CCDM’s internal 
namespace or the defined mapping set for a given data source 
(external namespace) 

VALUE 
(0, 23, F03, 12.7g) 

The actually measured value, matching the referred VARIABLE’s 
data type and domain. Numeric values are allowed to be trailed 
by an alternative unit, if it can be converted accordingly (e.g., µg -
> mg) 

PROVENANCE 
(studyserver:/nfs/data/export/v2.e
av, 1234fsdjklfn55, Sally’s complete 
collection) 

Optional text field for providing information on the particular 
record’s origin; might be URLs, notes, encoded paths, hashes or 
any other information potentially helpful for re-locating data in 
the source itself if ever necessary. 

Supplementary Table 3: Data point elements matching the model’s core principle of relating a measurement (VARIABLE + 
VALUE) to an entity providing both relations to the individual (PID) and the time of recording (TIMESTAMP). 

 

Accordingly, data from external resources finally requires a conversion to the EAV-like format at the 

entry point to the CCDM in order to get handled. Handling meanwhile comprises a full check whether a 

particular data point matches the modeled metadata conditions. If so, data points ultimately get stored 

in an equally formatted data table. 

 

Implementation 

In order to make practical use of the common clinical data model, we developed a range of software 

solutions. These together form a flexible, multi-purpose semantic integration system to pool both data 

and metadata. Here, the CCDM is implemented as Django models, complemented with dedicated 

processes for importing, transforming and exporting information from external resources. While the 

model is fully computable, data’s compliance is asserted on the fly at the time of integration into the 

system. Considering semantic queries on thereby clean and harmonized data, such a system supports 

interoperability by centrally providing normalizations to public ontologies. Consequently, we offer 

common formats for exchange of (meta)data with connected systems. 

Essentially, our software layer comprises four major elements. The actual backend for storing data, data 

model and information on mapping sources’ metadata is Django-driven, based on MongoDB and access-
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controlled by KeyCloak. Two importers dedicated to the model/mappings and data, respectively, are 

processes ensuring the integration of either definitions or data from previously declared sources. For 

both, we provide web interfaces, primarily supporting data stewards. An API enables clients to query 

both clean data and the model itself. Here, data property is respected; users will only receive data points 

upon permission. Finally, the system is capable of providing data in various export formats; these 

comprise simple tabular, but also JSON-formatted files. While the latter is easily extendable to hospital-

oriented HL7-FHIR, exporting to CDISC could connect the environment to study-related IT systems. Both 

carry data and metadata in an integrative way, allowing for intrinsically semantic data. The CCDM itself 

including mappings from data resources and to public ontologies can be dumped to Web Ontology 

Language (OWL). 

 

Integration processes 

The integration of new sources of clinical data into our system requires two subsequent multi-step 

processes, preferably executed by a data steward. An overview is provided suppl. Fig. 3. 

 

 

Supplementary Figure 3: Overview on the data integration process. Integration of data from various sources starts with 
mapping the given meta data onto the common clinical data model. Resulting assignments and rules get implemented 
automatically in the central business intelligence. Similarly, data will be loaded into this central, database-driven environment; 
here, tabular data will be parsed, filtered and quality controlled according to the set-up source-specific declarations encoded 
in data model and mappings. Both integration processes are supported by a web interface, implemented as a form-driven file 
upload each 
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Modeling & Mapping 

In the first process of integrating metadata, the relevant parts of the external data space get 

semantically connected to the CCDM via pair-wise mappings between external variables and those of 

the CCDM core. declarations on the expected input data from the given study or dataset (‘resource’) 

have to be made. Rarely, the complete data space is subject to integration, as usually an excessive 

number of variables of partially quite special interest is recorded. In fact, there will be a core set of 

variables of common interest. Essentially, a respective list of identifiers should be prepared prior to the 

mapping process. The resource to be referenced for any set up mapping might be declared first. In the 

actual mapping process, optional transformations can be defined. These might be formulas from a small 

set of mathematical operations, or particular mappings of expected source values to legal target values. 

A simple example is the conversion from named months to their numerical equivalents (‘Jan’ → ‘1’). 

These assignments are declared separately as so-called ‘code mappings’ and are uniquely named. As 

code mappings are not restricted to data resources, they could be reused. 

If an external variable of interest does not match a core set variable even using transformations, the 

CCDM has to be extended with an adequately defined variable. Here, careful considerations on a 

generalization of the particular bit of information have to be made. As the data model is intended to be 

common, it might be favorable to define a widely applicable variable (by name, data type, values, range 

or arbitrary combinations of those) and introduce a sophisticated mapping for the given source. 

Similarly, the assignments of hierarchy (topics) and similarities (umbrella terms) might either refer to 

elements of the CCDM’s given pool or created newly. While both know identifier and description, the 

former allows the definition of more generalized ‘parent topics’. 

Finally, in certain complex settings the model variables might depend on multiple inputs. For instance, 

if not provided explicitly, an age of onset of a disease is necessary to calculate from the time of 

measurement (e.g. the clinical diagnosis) and the date of birth of an individual. Obviously, this 

calculation can be performed earliest when all necessary inputs have been read. Separate ‘calculation’ 

definitions serve as rule sets being executed in a post-processing procedure. Similar to the mapping 

definitions with transformations, functions from a provided set of operators allow relating multiple 

inputs, assigning the result to a variable. Several of those functions know a parameter to express a 

temporal tolerance (‘time delta’); if measurements have not been recorded in a certain period of time, 

they will not be set off against each other. 

All declarations on the CCDM’s core and mapping sets can be generated from either an interactive web 

interface or a mechanism for uploading bulk tables. While the former provides a fine-grained, guided 

user dialog and a number of support mechanisms (e.g. auto-complete), the CCDM’s table 

representation can be handled offline, generated programmatically and, not least, provides a 

comprehensive overview on the entire model. However, both options report issues on syntax, semantics 

as well as, to a certain degree, plausibility.  

 

Data integration 

The second, similar process of integrating actual data requires valid, source-specific declarations as 

indicated above. The reason is that input data is atomically checked for compliance, and all undeclared 

variables or measurements get ignored. Accordingly, all data finally integrated is guaranteed to comply 
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with the declared specifications of the respective source, formalized in the data model core and 

mapping tables. 

From the data steward perspective, data has to be uploaded with the reference to a declared source. 

Regarding the input format, either in the quite commonly used 2D CSV table (row = patient at date; 

column = variable measured) or an EAV-like file has to be provided. While the one-dimensional format 

natively matches the CCDM’s data point class, CSV files can be converted, if all information is present.  

In terms of processes and interfaces we provide a file upload web dialog as well as an API. Depending 

on the user-selected mode, data is persistently written to the database by single approved data points 

or completely model-compliant dataset only; also, a sanitizing option is provided, e.g., for correcting 

location-specific notations of decimal points or dates.  
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9. Glossary 

AD – Alzheimer’s Disease 
 
AData Viewer – Alzheimer’s Disease related Data Viewer 
 
ADNI – Alzheimer’s Disease Neuroimaging Initiative 
 
AIBL – Australian Imaging Biomarkers and Lifestyle Study of Aging 
 
ANM – AddNeuroMed study 
 
ANMerge – extension of ANM study 
 
API – Application Programming Interface 
 
BNT - Boston Naming Test 
 
CCDM - Common Clinical Data Model 
 
CDISC – Clinical Data Interschange Standards Consortium 
 
CDR – Clinical dementia rating 
 
CDRSB - CDR sum of boxes scores 
 
CERAD – Consortium to establish a registry for Alzheimer’s Disease 
 
CKAN - Comprehensive Knowledge Archive Network 
 
CSF – Cerebrospinal fluid 
 
CTO – Clinical Trials Ontology 
 
CSV – Comma-separated values 
 
Django - Python-based free and open-source web framework that follows the model-template-views 
architectural pattern. 
 
DKAN - DKAN Clinical Data Repository 
 
EAV/CR model – Entity-attribute-value model 
 
ECDF - empirical cumulative distribution function 
 
EPAD - European Prevention of Alzheimer's Dementia 
 
FAIR – Findable, Accessible, Interoperable, Reproducible 
 
DZNE – Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. 
 
GUI – Graphical User Interface 

https://ckan.org/
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GDPR – General Data Protection Regulation 
 
HBP – Human Brain Project 
 
HL7-FHIR – Level 7 International Fast Healthcare Interoperability Resources  
 
ID – Identifier 
 
IDSN – Integrative Data Semantics for Neurodegenerative research 
 
JSON – JavaScript Object Notation 
 
MCI - Mild Cognitive Impairment 
 
MMSE - Mini-Mental State Examination 
 
MRI - Magnetic resonance imaging 
 
MCI – Mild Cognitive Impairment 
 
NDD – Neurodegenerative disease 
 
NACC - National Alzheimer's Coordinating Center Study 
 
NCIT – National Cancer Institute Thesaurus 
 
OWL – Web Ontology Language 
 
PET - Positron emission tomography 
 
PID – Process identifier 
 
TIFF - Tag Image File Format 
 
OLS – Ontology Lookup Service 
 
TVB-Cloud – The Virtual Brain Cloud 
 
UCUM - Unified Code for Units of Measure 
 
UML – Unified Modeling Language 
 


