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1. Introduction 
 

Any analysis of empirical neuroimaging data is preceded by a rather complicated procedure of data 

processing, where the useful signal contained in raw data has first to be cleaned from numerous 

measurement and motion artifacts, confounds and noise, and then extracted for investigation (Salimi-

Khorshidi et al. 2014; Ciric et al. 2017). However, the lack of ground truth and golden standards for the 

data processing caused intense debates in the literature as to which algorithms and parameters should 

provide the most plausible results (Salimi-Khorshidi et al. 2014; Ciric et al. 2017; Qi et al. 2015; Maier-

Hein et al. 2017; Lindquist 2020). Hence, the modern neuroimaging data processing remains at the level 

of the best practice, which requires further investigations, especially, when the empirical data is used 

for derivation and validation of the whole-brain dynamical models (Honey et al. 2009).  

 

The crucial component for the data-driven and model-based investigation of the human brain activity 

and connectivity is an appropriate extraction of the structural connectivity (SC) approximating the 

axonal bundles in the brain and used to build an underlying network of the structural connectome 

(Sporns, Tononi, and Kötter 2005; Honey et al. 2009).  One of the widely used tools to provide a macro-

level human structural connectome in vivo is a whole-brain tractography (WBT) based on diffusion-

weighted imaging (DWI) (Sporns, Tononi, and Kötter 2005). The processing of the data from magnetic 

resonance imaging (MRI) corresponding to this analysis type involves many steps and approaches, and 

numerous software tools exist for the processing DWI, tractography and also functional MRI (Soares et 

al. 2013; Schirner et al. 2015; Esteban et al. 2019). Consequently, effects of different methods of 

neuroimaging data processing and brain parcellations on structural architecture have been reported 

(Bassett et al. 2011; Qi et al. 2015). Another study also demonstrated that processing the same 

neuroimaging data by different pipelines can affect the obtained results (Lindquist 2020). Therefore, a 

valid and reproducible data processing is one of the most important issues in human neuroimaging 

research (Maier-Hein et al. 2017; Parkes et al. 2018). However, solving this problem is a challenge, and 

addressing it is inevitably connected with evaluation of the impact of pipeline parameters on the 

extracted empirical data and, consequently, on the modeling results. The same applies to the processing 

of resting-state functional MRI (fMRI) data (Salimi-Khorshidi et al. 2014; Ciric et al. 2017). 

 

In this report we provide a full-scope pipeline for the processing of DWI and resting-state fMRI human 

neuroimaging data that takes the raw data and delivers the whole-brain structural and functional 

connectomes. The pipeline has a modular structure, where every module can be executed 

independently of the others if the corresponding input data is available, which contributes to the 

flexibility of pipeline application. Furthermore, the pipeline is distributed in a containerized form, which 

supports its cross-platform usage on different hardware and software environments ranging from 

single-core desktops and local clusters to supercomputers (Jülich Supercomputing Centre 2018). The 

pipeline was optimized for parallel processing of several subjects on multi-thread computational nodes 

and can be applied to process large datasets, e.g. the Human Connectome Project (HCP) dataset. 

 

The developed pipeline is an open-source collection of shell scripts based on several well-established 

and freely available software packages that are widely used in the neuroimaging community. The main 

goal of its development was, on the one hand, to simplify the procedure of the high-quality and state-

of-the-art data processing for the end user, where the complexity of the appropriate selection and 

application of data processing steps is resolved inside of the provided scripts. On the other hand, enough 

freedom for selection of parameters and algorithms of the data cleaning and signal extraction should 
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nevertheless be preserved such that unrestricted investigation of their impact on the derived results 

remains possible, in particular, by means of model-based approaches (Popovych et al. 2019). 

 

2. Partners involved 
 

This deliverable was prepared by the Institute of Neuroscience and Medicine (Brain and Behaviour, INM-

7) from the Forschungszentrum Jülich (FZJ). The computational resources were granted through JARA 

on the JURECA computational cluster at FZJ (Jülich Supercomputing Centre 2018). The containerized 

pipeline used for the neuroimage processing were optimized on the CPU partitions of JURECA in 

collaboration with the Jülich Supercomputing Centre (JSC) of FZJ. 

 

3. Description of work performed 
 

The developed pipeline consists of two parts. It was designed to (1) preprocess the raw T1-weighted 

(T1w) and diffusion-weighted MRI (dwMRI) data, extract the whole-brain tractography (WBT) and 

calculate the structural connectivity (SC); and (2) preprocess the raw T1w and fMRI data, normalize it to 

the standard MNI152 space and extract the blood-oxygenation level dependent (BOLD) signals and 

corresponding functional connectivity (FC). The two pipeline parts can be referred to as dwMRI and 

fMRI pipelines, respectively. In the pipeline scripts some functions of the following third-party software 

packages were used: 

 

• FSL Version 6.0 (Smith et al. 2004); FSL software license 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Licence); Web: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. 

• MRtrix Version 3.0 (RC3) (Tournier et al. 2019); Mozilla Public License 

(http://mozilla.org/MPL/2.0/); Web: http://www.mrtrix.org/. 

• ANTs Version 3.0.0.0.dev64-geecaf (Tustison et al. 2010); ANTs Licence 

(https://github.com/stnava/ANTs/blob/master/COPYING.txt);  Web: 

https://github.com/stnava/ANTs. 

• FreeSurfer Version 6.0.0 (Dale, Fischl, and Sereno 1999); The open source FreeSurfer license 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense); Web: 

http://freesurfer.net/fswiki. 

• AFNI Version Debian-18.0.05+git24-gb25b21054~dfsg.1 -1~nd90+1 (Cox 1996); AFNI license 

(https://afni.nimh.nih.gov/Legal_info); Web: https://afni.nimh.nih.gov. 

• Connectome Workbench Version: 1.4.2 (Glasser et al. 2013); Connectome Workbench license 

(https://www.humanconnectome.org/software/connectome-workbench-license); Web: 

https://www.humanconnectome.org/software/connectome-workbench. 

 

3.1. Processing of dwMRI data  
 

The dwMRI pipeline consists of 4 modules: preprocessing, tractography, atlas transformation, and SC 

reconstruction as illustrated in Figure 1. The modules can be executed either serially and automatically 

one after another if a complete processing of the subject data is necessary, or independently of each 

other if some of the processing tasks were already completed, and the corresponding data is available 

as an input for a given module. For example, if WBT for a given subject is available, the extraction of SC 
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for another brain parcellation can be performed only by involving modules 3 and 4 which require much 

less computational resources than module 2. 

 

 
Figure 1: Workflow of the modular structure of the dwMRI pipeline consisting of four modules which can be executed 

either serially one after another or separately of each other. 

 

In more detail, the mentioned modules of the dwMRI data processing are as follows. 

 

1. The preprocessing module performs image processing for T1w and DWI such as intensity 

normalization, denoising, motion correction with calculation of diffusion tensor image (DTI), 

registration, and tissue segmentation. 

2. The tractography module estimates fibre oriented distribution (FOD) based on spherical 

deconvolution derived from the processed DWI (Jeurissen et al. 2014). After the FOD 

estimation, streamlines are generated by a tracking algorithm with various parameters, for 

instance, total number of streamlines (Figure 3). 

3. The atlas transformation module uses the registration results in the preprocessing module 

for atlas transformation from the MNI standard space (6th generation in FSL) to a native 

DWI space (Figure 4). 

4. The reconstruction module extracts SC and an average path-length (PL) of WBT streamlines 

for each region-to-region connection based on the transformed atlas (Figure 5). 

 

Additional details on the structure of the dwMRI pipeline are presented in Table 1, where the main steps 

of the data preprocessing are indicated in the order of their execution (left column) together with the 

used software packages mentioned above (middle column) and the corresponding functions (right 

column). 

 
Table 1: Main steps of the data processing, utilized software packages and executed functions of the dwMRI pipeline. 
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Preprocessing module Software Function 

Process T1w image Freesurfer recon-all 

De-noise diffusion-weighted images 

(DWI) 
MRtrix3 dwidenoise 

Bias-field correction for DWI MRtrix3 and ANTs dwibiascorrect 

Motion-correction and DTI calculation Freesurfer dt_recon 

Co-registration and registration FSL flirt, fnirt, applywarp 

Generate a cortical mask FSL and Freesurfer fslmaths, applywarp, mri_convert 

Tractography module Software Function 

Estimation of fibre oriented distributions MRtrix3 dwi2response, dwi2fod 

Tracking streamlines MRtrix3 tckgen 

Atlas transformation module Software Function 

Atlas transformation FSL and Freesurfer fslmaths, applywarp, mri_convert 

Reconstruction module Software Function 

Reconstruction of connectivity matrices 

of SC and PL 
MRtrix3 tck2connectome 

 

For the end users several important parameters of the dwMRI pipeline are left open for modification in 

the input file of the pipeline including selection of the brain atlas that is supposed to be in the 1 mm iso-

cubic MNI space (6th generation in FSL), the number of total WBT streamlines (tract), the maximum 

angle in degrees between successive steps (tckgen_angle), and the minimum and the maximum length 

of streamlines. The default values are indicated in the supplied example of input parameters. There are 

other available options for the image processing, tracking algorithms, and reconstructions that can be 

modified at the pipeline execution. This provides freedom for configuration of the data processing steps 

and parameters that can be used to investigate their impact on the processed data and extracted 

signals. 

 

3.2. Processing of the resting-state fMRI data 
 

The fMRI pipeline also contains 4 modules designed to process the raw structural images, perform a 

minimal and enhanced processing of raw fMRI data and signal extraction as illustrated in Figure 2, 

discussed in detail below and listed in Table 2. 
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Figure 2: Workflow of the modular structure of the fMRI pipeline consisting of four modules which can be executed 

either serially one after another or separately from each other. 

 

1. The structural processing module processes the raw structural T1w image (also T2w if 

available) by performing ACPC alignment, brain extraction, bias correction, segmentation 

and spatial normalization to the standard MNI152 template.    

2. The minimal processing module processes the raw resting-state fMRI images by first 

excluding a few initial volumes from the processed data and then performing slice-timing 

and motion corrections and intensity normalization. In addition, 24-parameter motion 

regressors are calculated.  

3. The enhanced processing module includes additional steps for more sophisticated fMRI 

processing such as co-registration with the T1w image and two-step spatial normalization 

to the MNI152 standard template, smoothing, temporal filtering and covariance regression 

by using the calculated 24 motion regressors and global whole-brain and/or tissue signals.    

4. The signal extraction module calculates the BOLD signals and functional connectivity for any 

brain parcellation provided by the user in volumetric form in MNI space.  

 

Additional details on the structure of the fMRI pipeline are presented in Table 2 in the same format as 

for the dwMRI pipeline (Table 1). 

 
Table 2: Main steps of the data processing, utilized software packages and executed functions of the fMRI pipeline. 

Structural processing module Software Function 

Anatomical average FSL robustfov, midtrans,fslmaths 
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ACPC-alignment FSL flirt/aff2rigid 

Brain-extraction ANTs/FSL 
fnirt-based brain extraction, 

antsBrainExtraction, bet 

Bias-correction FSL fsl_anat, epi_reg (if T2w used) 

Segmentation FSL fast 

Spatial normalization FSL/ANTs flirt, fnirt, antsRegistration 

Minimal processing module Software Function 

Volume exclusion FSL fslroi 

Slice-timing correction FSL slicetimer 

Motion-correction FSL mcflirt 

24-parameters head motion calculation AFNI 1deval 

Intensity normalization FSL fslmaths 

Enhanced processing module Software Function 

Co-registration/spatial normalization 

(MNI) 
FSL/ANTs 

flirt, applywarp, antsRegistration, 

antsApplyTransform 

Smoothing Workbench wb_command –volume-smoothing 

Temporal filtering FSL fslmaths 

Covariance regression FSL fsl_glm 

Signal extraction module Software Function 

Atlas-based BOLD extraction FSL fslmeants 

Seed-based functional connectivity AFNI 3dNetCorr 

 

As for the dwMRI pipeline, several important parameters of the fMRI pipeline can also be modified by 

the end user including selection of the brain atlas or segmentation that is supposed to be in the 2 mm 

iso-cubic MNI space (6th generation in FSL), possible inclusion of T2w images in the processing 

workflow, methods for the brain extraction, and methods for spatial normalization. For the enhanced 

processing, the parameters for smoothing, temporal filtering and covariance regression can be defined 

by the user. This provides freedom for configuration of the data processing steps and parameters 

sufficient for investigation of their impact on the processed data and extracted signals. 
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3.3. Singularity containers 
 

The two discussed pipelines for dwMRI and fMRI processing were containerized into a singularity 

function (https://sylabs.io). The software packages mentioned above were embodied into the two 

separate containers together with the corresponding pipeline scripts used for processing (1) dwMRI and 

(2) fMRI data, respectively. The containerized pipeline was designed, tested and optimized for execution 

on single-core desktops or notebooks, high-throughput computing local clusters and high-performance 

computing systems, in particular, on the supercomputer JURECA at JSC of FZJ (Jülich Supercomputing 

Centre 2018) which uses the Slurm workload manager (https://slurm.schedmd.com/). The 

corresponding batch submission scripts with an optimized configuration are also included. Together 

with the containers, examples of the input files containing the values of pipeline parameters and 

environment variables as well as the shell scripts used for execution of the processing scripts within the 

pipeline containers are provided. Detailed instructions explaining the steps necessary for initial setting 

and start of the pipelines are also included as Read.me files. 

 

4. Results 
 

In this section we present the results of the application of the discussed dwMRI and fMRI pipelines to 

processing of the neuroimaging data. We illustrate how the human structural and the resting-state 

functional connectomes can be extracted by the developed pipelines when some parameters of the 

data processing vary. The obtained results were compared with those of other pipelines available from 

the literature. We also illustrate the scalability of the pipelines on the JURECA supercomputer at FZJ 

(Jülich Supercomputing Centre 2018). 

 

4.1. Structural connectivity pipeline 
 

The dwMRI pipeline receives T1w image, dwMRI data, b-vectors and b-values corresponding to the 

dwMRI of a given subject as input and calculates the WBT and SC matrices as main output. The latter 

include two connectivity matrices of streamline counts (also denoted as SC) and average path lengths 

(PL) consisting of the number of WBT streamlines connecting any two brain regions from a given brain 

parcellation and the corresponding average streamline lengths, respectively. Examples of WBTs 

calculated by the current pipeline for 10K and 100K total number of streamlines used as a pipeline 

parameter for WBT extraction are illustrated in Figure 3, where the difference in the WBT density 

between the two conditions are evident. 
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Figure 3: Whole-brain tractography (WBT) with different total numbers of streamlines as indicated in the plots. The 

thin lines depict the individual streamlines, and the color reflects their length ranging from blue (short streamlines) to 

red (long streamlines). The black dots indicate starting or ending points of streamlines, which are on the boundary 

between the cortical gray matter and the white matter. 

 

The WBT density influences the properties of SC and PL matrices that can be extracted by compressing 

the calculated WBT into inter-region connectivity based on a given brain parcellation/atlas. An 

important step in this procedure is a conversion of the considered brain atlas from the standard MNI 

space to a native diffusion-weighted image space of WBT, which is performed in module 3 (Figure 1).  

The results of such a conversion are illustrated in Figure 4 for the Schaefer atlas with 100 cortical parcels 

(Schaefer et al. 2018) and the Harvard-Oxford atlas with 96 cortical regions thresholded by 0.25 tissue 

probability (Desikan et al. 2006). Then the structural connectome as represented by the matrices SC and 

PL is extracted by projecting the WBT (Figure 3) onto the converted atlas and compressing all whole-

brain streamlines into the groups of inter-regional connections as illustrated in Figure 5 for the two 

examples of WBTs (Figure 3). As expected, the WBT density is clearly reflected in the density of the SC 

and PL matrices. 
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Figure 4: Results of atlas transformation from the MNI standard space (6th generation in FSL) to a native diffusion-

weighted image space for the Schaefer 100-Parcel atlas and the Harvard-Oxford 96 cortical regions thresholded by 0.25 

tissue probability. Different brain regions parcellated according to the two atlases are indicated by different colors. 

 

 
Figure 5: Results of reconstruction of SC matrices (upper row) and PL matrices (lower row) from 10K and 100K whole-

brain streamlines of WBTs illustrated in Figure 3 as indicated under the plots for the Schaefer 100-Parcel atlas (two left 

columns) and the Harvard-Oxford 96 cortical regions thresholded by 0.25 tissue probability (two right columns). Every 

dot in the plots stands for the corresponding inter-regional connection, and the color reflects the number of inter-

region streamlines for SC matrices and average streamline length for PL matrices with the scales on the side color bars.  

 

By comparing the SC and PL matrices extracted for different WBT densities we evaluate the impact of 

the number of WBT streamlines on the properties of the structural connectome. Figure 6 shows results 

of such a comparison, where the similarity (Pearson correlation) between SC and PL matrices calculated 

for varying numbers of total streamlines and those calculated for WBT with 10M streamlines is 

illustrated. SC matrices with a large number of streamlines are  similar to each other stable until 50K 

streamlines (Figure 6, left bars) However, PL matrices show low similarities across different WBT 

densities starting already from 2M streamlines (Figure 6, right bars). 
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Figure 6: Similarity between the SC and PL matrices extracted from WBT with different numbers of total streamlines 

indicated on the horizontal axes and those calculated for 10M streamlines. The similarity (Pearson correlation) is 

calculated for the Schaefer and the Harvard-Oxford atlases and averaged over 272 subjects from the HCP dataset. The 

error bars indicate the standard deviation. 

 

The results of the discussed dwMRI pipeline developed as a collection of shell scripts were compared 

with the data processing results of a similar pipeline developed with the employment of Matlab, where 

the function of the statistical parametric mapping (SPM) toolbox (https://www.fil.ion.ucl.ac.uk/spm/) 

for the bias field correction of T1w images was used. Otherwise the Matlab scripts and the shell scripts 

are constituted with the same back-bone of the current dwMRI pipeline. In addition, one more pipeline 

for dwMRI processing of the paper (Bajada, Schreiber, and Caspers 2019) was involved in the 

comparison. The reconstructed SC and PL matrices calculated for 23 HCP subjects from a minimally 

preprocessed diffusion-weighted HCP data (Glasser et al. 2013) by the three mentioned pipelines were 

pairwise compared with each other. All three pipelines demonstrate high similarity (Pearson correlation 

close to 0.9 or larger) when comparing SC matrices (Figure 7, left). Somewhat lower similarities of 

approximately 0.7 correlation were observed for PL matrices (Figure 7, right) which show higher 

vulnerability as expected from the results depicted in Figure 6. 

 

 
Figure 7: Similarity (Pearson correlation) between SC matrices (left plot) and PL matrices (right plot) extracted by 

different dwMRI pipelines for 23 HCP subjects based on shell scripts (current pipeline), Matlab and that from the paper 

(Bajada, Schreiber, and Caspers 2019) as indicated in the legends. S.D. denotes standard deviation. 

 

The containerized dwMRI pipeline was tested and optimized by using the HCP and the enhanced Nathan 

Kline Institute-Rockland Sample (eNKI, Usage agreement: 

http://www.nitrc.org/include/glossary.php#546) data. In particular, the pipeline was optimized for 

execution on the JURECA in JSC (FZJ). Computation time of the preprocessing and the atlas 

transformation modules was obtained by increasing the number of subjects to measure speed-ups, 

because functions of FSL do not support multi-threading. The tractography and the reconstruction 

modules were designed for multi-threading, therefore, computation time of them was obtained by 

https://www.zotero.org/google-docs/?T3Y8AA
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increasing the number of threads to calculate speed-ups. Figure 8 shows the calculated speed-ups 

across the number of subjects (for the preprocessing and the atlas transformation modules) and the 

number of threads (for the tractography and the reconstruction modules). As a result, the optimal 

number of HCP subjects suggested to be simultaneously processed on the same JURECA node was found 

to be 8 for the preprocessing module and 12 for the atlas transformation module limited by the amount 

of working memory of the computational node. The optimal number of threads per subject for the 

tractography module is 48 which can be used for the reconstruction module as well. Consequently, the 

optimal configuration of the dwMRI pipeline on JURECA is 8 subjects per node for the preprocessing 

and the atlas transformation modules and 48 threads per subject for the tractography and the 

reconstruction modules. 

 

 
Figure 8: Results of the scaling optimization and speed-ups of the dwMRI pipeline for HCP subjects on the JURECA. The 

optimization was performed separately for each pipeline module indicated in the titles of the plots. The proportion of 

parallelization was calculated by Amdahl’s law and indicated in the plots, where the curves reflecting the computation 

time on JURECA, fitting to Amdahl's law and ideal speedup are shown as indicated in the legends. 

 

 

4.2. Functional connectivity pipeline 
 

The developed fMRI pipeline was used to process the raw resting-state fMRI data and extract of BOLD 

signals and FC for subjects from the 1000BRAINS cohort (Caspers et al. 2014). Examples of FC matrices 

for one subject are illustrated in Figure 9, which were calculated using the current fMRI pipeline (Figure 

9A) and two other well-known pipelines that are provided by the software packages FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) (Figure 9B) and SPM (https://www.fil.ion.ucl.ac.uk/spm/) (Figure 

9C). In such a way we can compare the performance of the pipeline presented here with the state-of-

the-art. The similarity between the obtained FC matrices Figure 9 was quantified by calculating pairwise 

similarity between the matrices as given by the Pearson correlation coefficient as illustrated in Figure 

10 for 30 subjects. We found a relatively high correspondence between the patterns of the resting-state 

FC for all subjects when comparing the current pipeline with FSL pipeline (Figure 10A) and SPM pipeline 

(Figure 10B). These similarities are comparable to the correlations between results from the pipelines 

of FSL and SPM (Figure 10C). It can further be strengthened if the same data processing steps were 

performed in each of the compared pipelines as illustrated in Figure 10D for the comparison between 

the current pipeline and FSL. 
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Figure 9: Examples of the resting-state FC calculated for the same subject by (A) current fMRI pipeline, (B) FSL and (C) 

SPM resting-state pre-processing pipelines in default settings. The Schaefer atlas with 100 cortical parcels was used for 

the brain parcellation. The Pearson correlation coefficients between the BOLD signals of the brain regions indicated on 

the axes are depicted by color ranging from -1 (black) to 1 (white).  

 

 
Figure 10: Similarity (Pearson correlation) of the resting-state FC patterns compared between the following two 

pipelines used of their calculation: (A) Current pipeline and FSL, (B) current pipeline and SPM, (C) FLS and SPM, and (D) 

current pipeline and FSL with the same steps of data processing. The mean correlation across subjects is also indicated, 

and the parcellation as in Figure 9. 

 

The quality of the pre-processed resting-state fMRI data can be evaluated by calculating DVARS 

measures for diagnosis of bad scans, i.e., time points with an enhanced variability as compared to the 

rest of the data (Afyouni and Nichols 2018). Examples of the time courses of one of such variables are 

shown in Figure 11, where reflects an excess variance shown as a spike as a 

percentage of average variance in the entire data. This variable can be used as a standardized measure 

for the “practical significance” of the spikes that are still needed to be cleaned up by data processing 

methods (Afyouni and Nichols 2018). Such significant spikes/scans are marked by red stripes in Figure 

11. In the illustrated examples, the current fMRI pipeline performed relatively well (Figure 11A) and 

exhibited less spikes as compared to FSL pipeline (Figure 11B) or SPM pipeline (Figure 11C). This result 

was also confirmed when averaging over 30 subjects of 1000BRAINS cohort.  The resting-state fMRI data 

processed by the current pipeline contained on average 5.4 significant scans, whereas the FSL and SPM 

pipelines missed in average 7 and 10.3 significant spikes, respectively. 
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Figure 11: Time courses of DVARS  reflecting an excess fast variance as percentile of the average 

variance of the resting-state fMRI data (Afyouni and Nichols 2018) pre-processed for the same subject by (A) current 

pipeline, (B) FSL pipeline and (C) SPM pipeline. The fMRI scans with significant variance are marked by red stripes.  

 

The containerized fMRI pipeline was tested and optimized by using the 1000BRAINS data (Caspers et al. 

2014) for deployment on the JURECA supercomputer (Jülich Supercomputing Centre 2018) in JSC (FZJ). 

Computation time of the four modules (Figure 2) was optimized by increasing the number of subjects 

for simultaneous processing on the same computation node to measure speed-ups, because the 

functions of FSL used in all modules (Table 2) do not support multi-threading. The results are presented 

in Figure 12arallelization is also obtained by fitting the obtained computation time to Amdahl’s law. The 

parallelization is high for the modules of the minimal processing and signal extraction, however, the 

speed-up is less pronounced for the modules of structural and enhanced processing. Nevertheless, we 

found that the optimal number of subjects suggested to be simultaneously processed on the same 

JURECA node was found to be 24 for all modules limited by the amount of working memory of the 

computational node. 

 

 
Figure 12:  Results of the scaling optimization and speed-ups of the fMRI pipeline for 1000BRAINS subjects on JURECA 

in JSC (FZJ). The optimization was performed separately for each pipeline module indicated in the titles of the plots. 

The proportion of parallelization was calculated by Amdahl’s law and indicated in the plots, where the curves reflecting 

the computation time on JURECA, fitting to Amdahl's law and ideal speedup are shown as indicated in the legends. 

 

5. Conclusion, next steps 
 

In this deliverable we provided the full-scope containerized pipeline for processing of dwMRI and 

resting-state fMRI data with the optimized configuration on the HPC environment (JURECA 

supercomputer at FZJ). The pipeline is a set of open-source shell scripts based on well-established freely 

available software packages. The modular structure of the pipeline allows for a flexible pipeline 

application for processing of the neuroimaging data, its re-usage and recalculation for other values of 

the pipeline parameters separately for every module. The pipeline parameters can be varied at the 

moment of pipeline execution by the end user. The designed freedom with modification of several 

https://www.zotero.org/google-docs/?xP0SHl
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important parameters of the data processing can facilitate the pipeline application for scientific 

purposes. In addition, the containerized form of the pipeline distribution supports its cross-platform 

usage that was tested for an optimal deployment on single-core desktops and notebooks and on 

supercomputers with parallelized processing of many subjects. We demonstrated that the developed 

pipeline can effectively process and denoise the neuroimaging data and extract the corresponding 

signals. We showed that the processing results are comparable with those from the other well-known 

pipelines available in the neuroimaging community.  

 

The next steps may include further optimization of the fMRI pipeline for parallelized deployment, 

extending its application spectrum to the task-based fMRI data with the first- and second-level analyses, 

incorporation of further denoising methods based on, e.g., ICA+FIX and AROMA algorithms and surface-

based approaches.  Both pipelines can be adapted for individualized data processing, where the whole-

brain connectomes will be generated based on individual images in native spaces. 
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