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1. Introduction 
 
 

The current deliverable is part of the VirtualBrainCloud (TVB-C/TVB-Cloud) project, which strives to 
leverage the potential of big data and high-performance computing (HPC) in order to develop a cloud-
based brain 
simulation platform for personalized prevention and treatment of neurodegenerative diseases (NDD). 
Very large empirical datasets, such as neuroimaging data from magnetic resonance imaging (MRI) and 
a variety of its modalities, collected at various sites all over the world containing data from tens of 
thousands of subjects, provide the basis of this huge endeavor. However, the size and complexity of 
such datasets come along with increased computational costs. This is aggravated by the fact that 
neuroimaging studies generally involve an enormous number of features. Especially in voxel-based 
approaches, the number of features (corresponding to the voxels of each image) vastly exceeds the 
number of samples (image of each subject). Therefore, the investigation of large datasets requires 
dimensionality reduction in many cases. This is usually done by making use of a brain atlas that provides 
the appropriate parcellation of the brain (Eickhoff et al., 2018; Thirion et al., 2014), in which several 
hundred thousand of voxels from high-resolution neuroimaging data are grouped into a few hundred 
brain regions. As such, they serve as biologically informed strategies of data compression, reducing the 
high dimensionality of neuroimaging data making them computationally better tractable and facilitating 
data analyses or in some cases, such as, e.g., whole-brain connectomics, even just making them possible.  
 
Brain atlasing is central in the development of a cloud-based brain simulation platform to support 
personalized diagnostics and treatments in NDD, which is the ultimate goal of TVB-C/TVB-CLOUD. 
Advanced simulation requires an a priori parcellation of the brain into separate areas based on which 
individual connectomes can be established in order to simulate parcel-wise dynamics. Moreover, multi-
modal atlasing functions as a scaffold that can be enriched by local annotations in form of various 
individual findings from brain anatomy, dynamics and pathology. As such, it serves as an integrated 
knowledge space, in which different kinds of information can be combined in order to obtain a more 
comprehensive understanding of the brain.  
 
One approach for brain parcellation in vivo is resting-state functional connectivity (RSFC), which 
measures the synchronization of RS-fMRI signals between brain regions while the subject is resting in 
the scanner without performing a task (Biswal et al., 1995). This approach was applied in the Schaefer 
atlas (Schaefer et al., 2018), in which, at different granularity, the patterns of the RSFC were used to 
group the voxels (or vertices) with similar connectivity into the same parcel but at the same time 
assigned spatially adjacent vertices with different RSFC profiles to different parcels. Consequently, in 
contrast to previous publications which relied either on global similarity (clustering brain regions based 
on similarity in RS-fMRI time courses) or on local gradient methods (detecting abrupt transitions in 
functional connectivity patterns, potentially reflecting cortical areal boundaries), Schaefer combined 
both approaches. From a great variety of existing anatomical and functional approaches to brain 
parcellation (Eickhoff et al., 2018; Thirion et al., 2014), one may suppose that conceptually the Schaefer 
atlas might be most appropriate for investigation of the resting-state brain activity and connectivity, as 
tying together voxels with similar time courses optimizes the functional homogeneity of RS signals in 
the nodes. 
 
In this deliverable, we demonstrate modeling of RS data by means of the Schaefer atlas, which acts as a 
scaffold that can be enriched by local annotations. In order to provide region-level annotations of the 
nodes for The Virtual Brain (TVB), we extensively developed, tested and optimized the structural and 
functional profiling of the regions, with a special focus on NDDs and common confounds. 
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2. Partners involved 
 
This deliverable was prepared by the Institute of Neuroscience and Medicine (Brain and Behaviour, INM-
7) from the Forschungszentrum Jülich (FZJ). The computational resources were provided by the JURECA 
computational cluster at the FZJ (Jülich Supercomputing Centre).  
 
 

3. Description of work performed 
 

3.1 Application of the Schaefer atlas in whole-brain dynamical modeling 
 
As already stated above, brain parcellations in form of atlases are a beneficial tool for different purposes 
in the context of improved understanding of brain organization, predicting individual phenotypes, or 
precision medicine. One example is whole-brain dynamical modeling. This is necessary to develop a 
cloud-based brain simulation platform for personalized prevention and treatment of neurodegenerative 
diseases (NDD), which is the aim of TVB-C/TVB-CLOUD. Dynamical models of brain activity can be used 
in an attempt to explain the relationship between neuronal dynamics and neuronal structures, instead 
of just describing it. The procedure of the model derivation and validation involves its fitting to empirical 
data, where the model parameters are adapted in such a way that the model output (i.e., simulated 
RSFC) approximates the empirical data as much as possible. A detailed investigation of the validated 
models, in particular, the impact of one or another model parameter on the simulated data and its 
correspondence to the empirical one can contribute to the understanding of the underlying 
mechanisms of the observed neuronal activities. In contrast, such a freedom of the parameter variation 
is absent for empirical data, which makes it difficult to reveal a mechanistic origin of the relationship 
between brain structure and function using only the measured data (Popovych et al., 2019). Moreover, 
models can serve as a testbed for testing new treatments for certain neurobiological diseases to 
simulate their effects first before actually applying them in practice, which can contribute to a model-
based optimization of therapeutic interventions.  
 
Utilizing brain parcellation is essential for dynamical modeling of brain activity, in order to define the 
nodes of a network model based on the brain regions proposed by a certain atlas (Honey et al., 2009). 
The individual nodes can be coupled to a brain network, in which the inter-node connections are usually 
derived from the structural connectivity (SC) calculated from the empirical diffusion-weighted MRI data. 
SC serves as a proxy for physical connections between brain regions (Hagmann et al. 2010). Together, 
these inter-node connections constitute what is referred to as the brain’s structural connectome, 
contributing a description of the underlying physical organization of the brain and defining the 
topological structure of the network model. 
 
After setting up the network model based on the empirical SC, the next step is to compute the network’s 
empirical neuronal activity. The empirical FC is usually calculated from the blood oxygen level-
dependent (BOLD) signals inferred from RS-fMRI. For this purpose, a brain atlas (like the Schaefer atlas) 
is used to divide the brain into separate parcels based on which the mean BOLD signals (averaged over 
all voxels in each region separately) are calculated for each brain parcel. The extracted BOLD signal of 
each brain region (network node) is then correlated with those of all the other nodes across the brain, 
resulting in empirical FC matrices for each subject. One modeling approach is to simulate this empirical 
functional connectome. In order to do so, simulated BOLD time series are generated for each node of 
the derived dynamical model, which are then used to calculate the simulated FC (Honey et al., 2009). 
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Finally, the simulated FC has to be validated against the empirical data. Since the model comprises 
different parameters, like coupling strength, whose true values are unknown, these parameters have to 
be adjusted in the model validation step so that the model output approximates the empirical FC as 
closely as possible (Honey et al., 2009, Cabral et al., 2011). Once the optimal parameter values are 
obtained, they are fixed, and the model is supposed to be validated against empirical data. This whole 
process is schematically depicted in Figure 1. The model validation of one model against empirical data 
is displayed in Figure 2 (Popovych et al. 2021). Here, the fitting of the simulated FC to empirical FC (Fig. 
2A-C) and the fitting of the simulated FC to empirical SC (Fig. 2D-F) based on the Schaefer atlas is 
demonstrated. The similarity between the empirical functional and structural connectomes and the 
simulated functional connectome in the model parameter space is represented in Figs. 2A and 2D 
respectively, where the optimal parameter points of the best fit are indicated by white circles. The 
corresponding simulated FC matrices of the best fit compared with empirical FC and empirical SC are 
shown in Figs. 2B and 2E, respectively, and the corresponding empirical FC matrix and empirical SC 
matrix are depicted in Figs. 2C and 2F, respectively. 
 

 
Figure 1. Derivation and validation of a whole-brain dynamical model. First, brain regions extracted from an atlas serve as 
nodes in the modeled network (upper left). Inter-node connections are extracted from the empirical SC calculated from 
dwMRI data (upper right). After that, the empirical FC (eFC) of the atlas-based network is computed via correlating each 
parcel’s mean BOLD signal with that of the other parcels across the brain (lower left). Simulated FC (sFC) is calculated by 
cross-correlation of the simulated BOLD time series that are generated for each node of the derived model (lower right). 
Finally, the simulated model’s parameters are adapted in such a way that the sFC approximates the eFC as closely as possible. 
 
 

 
Figure 2. The model validation for one model based on Schaefer parcellation against empirical data is displayed. 
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3.2 Spatial annotations within the nodes of the TVB atlas scaffold 
 
As demonstrated above, RS data can be modeled by means of the Schaefer atlas, which additionally acts 
as a scaffold that can be enriched by local annotations. In order to provide region-level annotations for 
the nodes of TVB, we extensively developed, tested and optimized the structural and functional profiling 
of the regions within this same scaffold. Investigating the regions defined by the Schaefer atlas more 
closely, we focused especially on the examination of their relation to NDDs and common confounds, 
which are the main focus of the research in the context of TVB-C/TVB-CLOUD. 
 
Providing these annotations, we investigated the functional and structural properties of the brain 
parcels. In the first approach, RS connectomes were created based on parcellation by the Schaefer atlas. 
For each parcel, the subject-specific time series were extracted by averaging the BOLD signals of all 
voxels within each parcel, so that every parcel ends up with an individually computed signal. After that, 
the connectivity pattern of each parcel was computed by correlating its time series with those of all 
other parcels. Finally, each parcel’s connectivity with the other parcels across the whole brain for each 
subject was used as a feature in the subsequent prediction analysis for this specific parcel.  
 
One exemplary application of individual FC is the investigation by Weis et al. (2020) in which a machine 
learning approach was employed in order to evaluate how accurately a subject’s sex can be classified 
based on his/her individual RSFC. In contrast to previous studies which assessed sex prediction accuracy 
based on whole-brain connectivity patterns, using parcel-wise FC based on the Schaefer atlas had two 
big advantages. It allowed us to circumvent the curse of dimensionality and to investigate which brain 
areas’ connectivity patterns can classify sex most accurately, further improving the interpretation of the 
results and localization of the predictive brain regions. For each parcel separately, classifiers were 
trained to learn the relationship between each individual parcel’s FC pattern and the participants’ sex. 
After that, these classifiers were used to predict the sex of previously unseen subjects given 
corresponding connectivity patterns.  
Although the whole-brain FC achieved a high sex prediction accuracy, accuracies weren’t similarly high 
for all individual brain regions. Exhibiting considerable differences in sex prediction accuracies, certain 
brain regions’ FC was most characteristically different between males and females. Figure 3 depicts the 
classification accuracies for the validation of the classifier within the training sample (Fig. 3a) as well as 
across two unrelated test samples (Figs. 3b, 3c). The most predictive parcels were located along the 
cingulate cortex, in the right anterior midcingulate cortex as well as the left posterior cingulate cortex. 
Other highly predictive parcels were located in the bilateral medial frontal cortex, in the bilateral 
precuneus as well as the left lateral frontal cortex, the left temporo-parietal regions, and the insula. 
These results demonstrate that certain parcels exhibit significantly different FC patterns between men 
and women. Since sex is a common confounding variable, it is highly relevant for further analyses in the 
framework of TVB-C/TVB-CLOUD to know which brain regions’ FC differ most between the two sexes.  
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Figure 3. Classification accuracies for the validation of the classifier within the training sample (3a) as well as across two 
previously unknown samples (3b, 3c). 
 
 
In another application, we aimed to investigate the relationship between interindividual variability in 
brain regions’ connectivity and behavioral phenotypes (Wu et al., 2021). Therefore, we developed a 
connectivity-based psychometric prediction framework based on individual regions’ connectivity 
profiles. One of the applications was to display the prediction accuracy scores distributed across all 
parcels, which have been defined based on the Schaefer atlas, for single psychometric variables. This 
means that maps were created separately for each investigated psychometric variable, depicting how 
accurately this variable could be predicted based on the FC of each individual brain parcel, again defined 
by the Schaefer atlas. 
The examination of the psychometric prediction accuracy spatial distribution maps appeared to 
converge well with the brain mapping literature. In Figure 4 the prediction accuracy distribution maps 
are displayed for four psychometric variables: (Fig. 4A) motor strength; (Fig. 4B) crystallized cognition 
composite score; (Fig. 4C) working memory task overall accuracy; and (Fig. 4D) working memory task 
face condition accuracy. For example, it can be seen that the prediction accuracies for “strength” were 
generally low, whereas those for “working memory task overall accuracy” were quite high across the 
brain. Additionally, the distributions for “working memory task overall accuracy” and “working memory 
task face condition accuracy” were quite similar, with additional better prediction power in the right 
hemisphere’s ventral temporal regions for the latter one, which agrees with the literature on faces 
processing in the brain (Sams et al. 1997; Nakamura et al. 2000; Nelson 2001). All in all, this study 
demonstrates that the Schaefer atlas can also be utilized to investigate how accurately different 
psychometric variables can be predicted based on the FC of individual pre-defined regions across the 
whole brain. Moreover, the results provide more insight into the task-related functions of individual 
brain regions whose dynamics are simulated within the scope of the TVB. 
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Figure 4. The prediction accuracy distribution maps of four selected psychometric variables ((A) strength; (B) crystallized 
cognition composite score; (C) working memory task overall accuracy; and (D) working memory task face condition accuracy) 
across the whole brain.  
 
 
Parcellation based on the Schaefer atlas was also applied in the framework of investigating the 
neurobiological correlates of subtypes of neurobiological diseases. For example, Chen et al. (2020) 
aimed to disentangle the psychopathological heterogeneity of Schizophrenia to identify 
psychopathological subtypes and their neuronal representations. Therefore, we first applied machine-
learning approaches to patients’ scores on the Positive and Negative Syndrome Scale (PANSS; an 
assessment which aims to cluster schizophrenic patients into psychopathological subtypes) in order to 
identify its underlying generalizable factorization.  
A four-factor structure was observed comprising negative, positive, affective and cognitive dimensions. 
Based on this four-factor structure, two core psychopathological subtypes were obtained representing 
the positive-negative dichotomy of this disease. Additionally, the researchers investigated how 
accurately patients’ disease subtype membership can be predicted based on FC patterns of separate 
brain regions, defined by the Schaefer atlas. Therefore, we examined in how far each individual parcel’s 
FC pattern is able to correctly assign previously unseen patients into either of the two identified disease 
subtypes. It was found that the individual subtype could indeed be predicted with high accuracy based 
on the FC patterns of the right ventromedial prefrontal cortex (vmPFC), the right temporoparietal 
junction (TPJ), the bilateral precuneus, and the left posterior cingulate cortex (PCC) (Figure 5), 
demonstrating a neurobiological divergence between the two identified psychopathological subtypes 
of schizophrenia. Note that this task of classifying schizophrenia subtypes is more challenging than the 
canonical task of classifying patients and healthy controls.  
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Figure 5. Classification accuracies of subtype membership based on parcel-wise FC patterns, demonstrating a neurobiological 
divergence between the two identified psychopathological subtypes of schizophrenia. 
 
 
As already stated above, the Schaefer atlas was not only used for functional but also for structural 
profiling of brain regions within this same scaffold. In terms of brain anatomy, normal aging is associated 
with structural changes attributable to extensive gray matter (GM) atrophy (Raz et al., 2005). This is 
particularly true for NDDs such as Alzheimer's disease (AD), which show regional gray matter volume 
decline compared with age-matched healthy subjects (Ribeiro & Busatto, 2016). Moreover, previous 
studies found that increased atrophy rates in cognitively normal subjects are a strong indicator for the 
development of AD (Eskildsen et al., 2015) which indicates that structural images could be a potential 
biomarker for early prediction of AD onset. A widely used and valid tool to evaluate structural cerebral 
changes associated with normal aging or NDDs is voxel-based morphometry (VBM) which provides an 
automated, quantitative, and objective assessment of gray matter volume across the brain (Kurth et al., 
2015). In order to investigate in which brain regions, patterns of atrophy can predict the diagnosis of 
NDDs, which is the ultimate goal of TVB-C/TVB-CLOUD, we first employed VBM to estimate local gray 
matter volume. After that, we applied brain parcellation based on the Schaefer atlas in order to calculate 
average gray matter volume in each individual parcel per subject to assess differences in parcel-wise 
atrophy patterns in healthy controls versus NDDs.  
 
For example, Kröll et al. (2020) trained an algorithm on learning the relationship between gray matter 
volumes of each parcel defined by the Schaefer atlas and the presence or absence of an AD diagnosis. 
After that, this algorithm was used to classify previously unseen subjects as AD patients or healthy 
controls, given corresponding parcel-wise gray matter volumes. It was found that diagnosis could be 
predicted with high accuracy (91%) in previously unseen subjects. For example, the combination of 
patterns from the left temporal pole, the ventromedial putamen, and the right lateral prefrontal 
thalamus exhibited high prediction accuracy (Figure 6). Additionally, we applied the same algorithm to 
a new dataset to probe its prognostic capacity, which means that we evaluated whether this algorithm 
can predict whether a person with mild cognitive impairment (MCI) will develop AD or not. Conversion 
to AD was predicted with a moderate accuracy of 74%. These results serve as highly relevant local 
annotations within the nodes of the TVB atlas scaffold, providing information about which parcels’ 
atrophy patterns are most predictive of a future AD diagnosis. Moreover, these atrophy patterns can be 
used as biomarkers to predict disease progression, which is the ultimate goal of WP 4 in TVB-C/TVB-
CLOUD. 
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Figure 6. The combination of patterns from the left temporal pole, the ventromedial putamen, and the right lateral prefrontal 
thalamus exhibited high AD classification accuracy. 
 
 
Another NDD investigated in TVB-C/TVB-CLOUD is Parkinson’s disease (PD). In order to provide region-
level annotations for this disease, Eickhoff et al. (2021) investigated atypical brain aging in PD patients 
as a marker of brain health. Here, machine learning models were trained to predict PD patients’ 
chronological age using their parcel-wise patterns of regional gray matter volumes. It was found that 
the estimated age of PD patients based on their gray matter volume was three years higher than their 
true (chronological) age compared to that of healthy controls. This means that the brains of PD patients 
appear to be three years older compared to a healthy person of the same (chronological) age. These 
patients exhibited higher cortical atrophy in the right central region, medial frontal, visual and temporal 
cortices, the thalamus and the basal ganglia in comparison to healthy controls (Figure 7). Additionally, 
we correlated the accelerated aging index, i.e. the individual difference between estimated and true 
age, with the parcel-wise gray matter volumes of PD patients to examine which brain regions’ atrophy 
was most strongly associated with increased brain age. The relation between increased brain age and 
more pronounced atrophy was strongest in the Rolandic Operculum, the cingulate cortex and visual 
areas (Figure 8), which deviates from the observed gray matter volume differences between PD patients 
and healthy controls. This indicates that the observed atrophy patterns in PD patients are only to some 
extend related to increased brain age. These results demonstrate which brain regions’ atrophy patterns 
are most characteristic of increased brain age and as such serve as important regional annotations that 
enrich the nodes within the TVB model scaffold.  
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Figure 7. Differences in gray matter volume between PD patients and healthy controls. The values show the percent atrophy 
in patients compared to controls. 
 
 

 
Figure 8. Correlation of the individual difference of estimated and true age with the parcel-wise gray matter volumes of PD 
patients. 
 
 
Moreover, in the context of TVB-C/TVB-CLOUD, we aimed to investigate the predisposing risk factors of 
AD, indicating which people might be at greater risk of developing an NDD. Especially identifying 
modifiable risk factors is critical in order to postpone disease onset or slow down disease progression. 
One of these factors might be sleep-disordered breathing (SDB), as previous findings suggested that 
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patients with a certain type of SDB are more likely to develop mild cognitive impairment or dementia 
(Osorio et al., 2015; Yaffe et al., 2011).  
Aiming to study the influence of SDB, we investigated the association between parcel-wise gray matter 
volumes using the Schaefer atlas and cognitive status (mild cognitive impairment versus AD versus 
healthy control) as well as sleep-disordered breathing (Mohajer et al.,2020). It was shown 
corresponding to previous findings, that the cognitive status was significantly associated with decreased 
gray matter volume, with patients with mild cognitive impairment and AD exhibiting lower volume in 
bilateral temporal lobes including fusiform gyri, medial temporal lobes, and hippocampal formations, 
and inferior and middle temporal lobes, as well as bilateral insula, middle frontal, and cingulate cortices, 
as well as left superior frontal cortex, compared to healthy controls (Figure 9). However, sleep-
disordered breathing, as well as sleep-disordered breathing-by-cognitive status interaction, wasn’t 
related to atrophy in any of the 673 parcels. This means that whereas mild cognitive impairment and 
Alzheimer’s disease are related to increased gray matter atrophy, we observed neither a general nor a 
diagnostic-dependent association of sleep-disordered breathing and gray matter atrophy. These results 
further enrich the region-level annotations of nodes within the TVB scaffold with information about 
which brain regions’ atrophy patterns are most related to mild cognitive impairment and AD, which is a 
key aspect of the research in TVB-C/TVB-CLOUD. 
 

 
 
 
Figure 9. Association between parcel-wise gray matter volume and cognitive status of subjects. 
 
 
 
 

4. Conclusion, next steps 
 
Brain atlasing is central in the development of a cloud-based brain simulation platform to support 
personalized diagnostics and treatments in NDD, which is the ultimate goal of TVB-C/TVB-CLOUD. This 
enables the a priori parcellation of the brain into distinct, biologically meaningful regions, the dynamics 
of which are then simulated based on the individual connectome. Moreover, it reduces the high 
dimensionality of neuroimaging data features that are both more computationally manageable and 
yield a better ratio between the number of samples and the number of features. Additionally, it provides 
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a common reference system that serves as a scaffold on which local annotations based on individual 
findings from brain anatomy, dynamics, and pathology can be anchored. 
 
In the past, different approaches have been evaluated in order to parcellate the brain, both structurally 
and functionally (Eickhoff et al., 2018; Thirion et al., 2014). From these studies, it was concluded, that 
the Schaefer atlas could be most appropriate for investigating the resting-state brain activity and 
connectivity, as it optimizes the homogeneity of the RS signals within the parcels. Based on the 
parcellation scheme provided by the Schaefer atlas, nodes have been extracted for whole-brain dynamic 
simulations within the framework of TVB-C/TVB-CLOUD. Such validated dynamical models can 
contribute to the understanding of the underlying mechanisms of the observed neuronal activities or 
they can serve as a testbed for testing new treatments for certain neurobiological diseases to simulate 
their effects first before actually applying them in practice, which can contribute to a model-based 
optimization of therapeutic interventions. 
 
In this deliverable, we demonstrated that the Schaefer atlas serves as a scaffold to which various local 
annotations by means of individual findings from different studies can be added in order to gain more 
information about the individual regions whose dynamics are simulated within TVB-C/TVB-CLOUD. 
Based on this parcellation scheme, the FCs of individual parcels with all the other parcels across the 
brain serve as features within a prediction analysis to train an algorithm to learn the relationship 
between parcels’ FC and for example sex classification, disease subtype prediction, or phenotype 
prediction. Specifically, the finding that certain parcels’ FC differs between males and females is 
important for further analyses within the framework of TVB-C/TVB-CLOUD as sex is a common 
confounding variable in neuropsychological investigations. Similarly, parcel-wise gray matter volumes 
were used as features to train an algorithm in order to predict the age of a previously unseen participant 
and the presence or absence of diagnosis of an NDD like AD or PD. It was found that certain parcels’ 
atrophy patterns can not only be used to correctly classify AD or PD patients versus healthy controls, 
but that they also serve as a biomarker, since they are indicative of disease progression, which is the 
main focus of the TVB-C/TVB-CLOUD. Moreover, evaluation of atypical brain aging in NDD patients as a 
marker of brain health revealed which brain regions are especially involved in increased aging.  
 
All in all, our findings demonstrate that the Schaefer atlas is a relevant tool to parcellate RS data. Based 
on this parcellation, nodes were extracted to perform whole-brain dynamical simulation, which is the 
central approach in TVB-C/TVB-CLOUD, aiming to develop a cloud-based brain simulation platform to 
support personalized diagnostics and treatments in NDD. Moreover, the Schaefer atlas serves as a 
scaffold to which local annotations, containing information about the individual brain parcels, whose 
dynamics are modeled, can be added. In order to provide such regional annotations, we extensively 
developed, tested and optimized the structural and functional profiling of individual brain regions within 
this same scaffold. Here, we focused specifically on the regions’ structural and functional properties in 
relation to diagnoses of NDD as well as common confounding variables. Doing so, we were able to 
provide crucial information that is linked to other work packages of the TVB-C/TVB-CLOUD, like WP4, 
aiming at improved diagnosis and prediction of disease progression.  
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