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1. Introduction 

Predictive models, using machine learning, are becoming a standard tool for scientific inference. In 
cognitive neuroscience, they can be used for decoding, to conclude on mental processes given observed 
brain activity. With the rise of large-scale brain-imaging cohorts, they can extract imaging biomarkers 
that predict across subjects phenotypes such as neuropsychiatric conditions or individual traits. 
A crucial aspect of these biomarkers is their ability to predict the outcome of interest, ie generalize to 
new data. However, these predictions can be driven by confounding effects. Such effects affect both 
the brain-imaging data and the prediction target but are considered as irrelevant. For instance, subjects’ 
in-scanner motion has been shown to severely affect the link between brain-imaging signals and their 
age: in-scanner motion varies with subjects’ age and it creates systematic differences in brain signals. 
Given this confounding effect, MRI biomarkers of brain aging may be nothing more than expensive 
measurements of head motion. Other examples may be more subtle: brain imaging reflects age quite 
accurately, and age matters for diagnosing Alzheimer’s disease, yet an important question is whether 
brain imaging yields an accurate diagnosis of Alzheimer disease beyond the mere effect of age. 
More generally, the data at hand often capture effects not of direct interest to the investigation. In 
many situations, some confounds such as head motion cannot be fully avoided. To make matters worse, 
large cohorts developed in population imaging to answer epidemiological questions as UK biobank are 
observational data: there is no controlled intervention or balanced case-control group; rather 
individuals are recruited from diverse populations with various sampling or selection biases. To conclude 
on the practical use of biomarkers, it is important to control that their predictions are not fully driven 
by such unwanted effects. This requires measuring model predictive accuracy after controlling for 
nuisance variables. Confounding effects can also make it hard to interpret brain-behavior relationships 
revealed by predictive models, as confounds can mediate the observed association or be a latent 
common cause to observations. 
In experimental settings, eg as in a small cohort, it can be suppressed by balancing the acquisition for 
confounds, or using randomized control trials. However, constraints in the data acquisition, eg 
recruitment of a large cohort, often imply that confounds are present in the data, and a suitable analysis 
is needed to avoid reaching erroneous conclusions. The statistical literature on controlling confounding 
variables is well developed for classic statistical analysis, such as statistical testing in a linear model at 
the heart of the standard mass-univariate brain mapping. However, these procedures need to be 
adapted to high-dimensional predictive-modeling settings, where the focus is to achieve high-prediction 
accuracy based on imaging data. Indeed, predictive models do not rely on the same parametric 
assumptions, namely linearity of effects and Gaussian noise. Often, a predictive analysis does not build 
on a generative model of the signal but on optimizing discrimination. In addition, predictive models 
draw their purpose and validity from out-of-sample prediction, rather than in-sample statistical testing. 
The question tackled here is thus whether one can assess the predictive accuracy of brain 
measurements free of unwanted confounds. It is not to identify treatment effects size nor to perform 
other types of causal inference. 
In this work, we study statistical tools to control for confounding effects in predictive models. We 
consider that practitioners should primarily avoid or reduce the impact of confounds on their model, 
but this is not always feasible or hard to check, hence, we choose to put the emphasis on the unbiased 
evaluation of models even in the presence of confounds. A preliminary version of the work discussed 
here was presented at the PRNI conference. While the core method is the same, its presents limited 
insights on the theoretical underpinnings and practical value of the method proposed. Experiments on 
simulated data are absent and experiments on neuroimaging data are limited to just one data set. In 
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particular, statistical significance is not established thoroughly, and only one alternative approach is 
considered. In short, the conference publication provides limited insights on the method, while the 
current work provides a complete description and points to the code for reuse. 
We first review how the classic deconfounding procedures can be used in predictive-modeling settings, 
i.e. together with cross-validation. We then expose a complementary approach that is not based on 
removing confounding effects, but rather testing whether a given predictive model – e.g. a biomarker– 
predicts well when these confounds are not present. For this we introduce the confound-isolating cross-
validation method, that consists in sampling test sets in which the effect of interest is independent from 
the confounding effect. The benefits of this approach are that it is non-parametric and that it directly 
tests the quantity of interest in a predictive analysis. We then run an extensive empirical study on three 
population-imaging biomarker extraction problems as well as simulations. We draw practical 
recommendations to test predictive models in the presence of confounding effects. 
 
 
 

2. Partners involved 

Inria 
 
 

3. Description of work performed 

Here we study how to adapt methods that control for confounds in statistical analyses to predictive 
modeling settings. We review how to train predictors that are not driven by such spurious effects. We 
also show how to measure the unbiased predictive accuracy of these biomarkers, based on a 
confounded dataset. For this purpose, cross-validation must be modified to account for the nuisance 
effect. To guide understanding and practical recommendations, we apply various strategies to assess 
predictive models in the presence of confounds on simulated data and population brain imaging 
settings. Theoretical and empirical studies show that deconfounding should not be applied to the train 
and test data jointly: modeling the effect of confounds, on the train data only, should instead be 
decoupled from removing confounds. Cross-validation that isolates nuisance effects gives an additional 
piece of information: confound-free prediction accuracy. 
 
 

4. Results 

Confound-isolating cross-validation 
Figure 1 displays the evolution of the association between confound and target during Confound-
isolating cross-validation in the CamCan dataset, predicting Fluid Intelligence with Age as a confound. 
In the full dataset, comprising 608 subjects, the correlation between confound and target is ρ = –0.67. 
Iterating the algorithm to remove half of the subjects leads to ρ = –0.17. 
The final test set contains 1/5 of the subjects and achieves ρ = –0.07, showing that it indeed cancels the 
dependency between aging and motion. The joint distribution between target and confound displayed 
in Figure 1 shows that the initial statistical dependency between these two variables vanishes after a 
few tens of iterations of the algorithm.  
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Results on CamCan and UKBB datasets 
Figure 2 reports the mean absolute error for the different approaches to control for confounds. The 
figure also reports the p-value of predictive accuracy, from permutations. The first thing to note is that 
without controlling for confounding effects, all models lead to significant prediction. But are these 
driven by the confounds? Given that the various approaches measure predictions on different data, we 
compare how far these predictions are above chance, rather than their absolute value. 
Deconfounding test and train sets jointly –removing the linear effect of the confounding variable on the 
full data– has little impact on the prediction performance on all datasets. On the other hand, out-of-
sample deconfounding changes significantly prediction performance in a way that varies across tasks. 
Prediction accuracy of fluid intelligence on CamCan falls to chance level. Age prediction on CamCan is 
little impacted. However, Age prediction on UKBB gives results worse than chance, i.e. worse than a 
model that learns to predict age on data where this relationship has been shuffled by permutation. 
Confound-isolating cross-validation also gives varying results on different datasets. For fluid-intelligence 
prediction on Cam-Can, it also gives results at chance level. For age prediction on CamCan, it does alter 
significantly prediction accuracy, and on UKBB, it leads to a slightly worse prediction, but still above 
chance. Finally, Prediction from confounds leads to chance-level or good prediction of the target 
depending on the dataset. In particular, it does better than chance for Fluid intelligence prediction. 
These results show that in all these datasets, the confounds z are associated with both the data X and 
the target y. For fluid intelligence prediction on CamCan, all the prediction of y from X is mediated by z. 
However, for age prediction in CamCan, there exists within X some signal that is unrelated to z but 
predicts y. Age prediction in UKBB is a more subtle situation: X contains signals from z and y with shared 
variance, but there is enough signal beyond the effect of z to achieve a good prediction, as 
demonstrated by confound-isolating cross-validation, where the prediction cannot be driven by z. Yet, 
out-of-sample deconfounding removes the shared variance and hence creates predictions that are 
worse than chance. 

 

Figure 1: Evolution of the test set created by Confound-isolating cross- 
validation. 

 
 



© VirtualBrainCloud | public report  

                                  6 of 6 

 
Figure 2:  Comparisons on population-imaging data 

 
 

5. Conclusion, next steps 

Deconfounding strives to remove confounding effects from the data, after which successful prediction 
can be interpreted as a direct link from the remaining brain signals to the outcome of interest. However, 
in biomarkers settings, the primary focus may be on the quality of detection, rather than interpretation, 
for instance to improve diagnosis or prognosis. In such settings, an important question is: how much do 
the brain signals improve the prediction upon a simpler measure of the confounding effect? Answering 
this question calls for a cross-validation procedure isolating this confounding effect. The corresponding 
prediction accuracy can then safely be interpreted as not resulting in any way from the confounding 
effect. 
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