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1. Introduction 
 
Successful analysis of the neuroimaging data strongly relies on the data quality, where the appropriately 
selected and performed steps of the data (pre-)processing, cleaning and signal extraction play a crucial 
role (Ciric et al., 2017; Maier-Hein et al., 2017; Botvinik-Nezer et al., 2020). The processing of the data 
from magnetic resonance imaging (MRI) is a complex procedure, involves many steps and approaches, 
and numerous software tools exist for this task (Soares et al. 2013; Schirner et al. 2015, 2021; Esteban 
et al. 2019). The current deliverable of the VirtualBrainCloud project also contributes to this field and 
presents a pipeline for the processing of MRI data, which is primarily designed for calculation of the 
structural and functional brain connectivities. The latter are used for derivation and validation of the 
data-driven whole-brain dynamical models (Ghosh et al., 2008; Honey et al., 2009) that are intensively 
investigated in the framework of the VirtualBrainCloud project. The structural connectivity (SC) 
calculated from the diffusion-weighted MRI (dwMRI) can be used to approximate the anatomical axonal 
connections in the brain and defines the underlying network of the models. The functional connectivity 
(FC) reflects the collective activity in the brain network, i.e., the extent of synchronization between 
network nodes and can be used for the model validation (fitting) against empirical data (Ghosh et al., 
2008; Honey et al., 2009; Popovych et al., 2019). At this, the model parameters are optimized in order 
to obtain the best correspondence between empirical and simulated FC.  
 
The validated models can be applied for various purposes including modeling and investigation of the 
clinical data, study of the mechanisms underlying neurobiological phenomena and neuronal disorders, 
distinguishing between healthy subjects and clinical patients, and suggesting an approach for hypothesis 
testing in silico (Jirsa et al., 2017; Zimmermann et al., 2018; Deco et al., 2019; Popovych et al., 2019). 
The model derivation and validation procedure may however follow different approaches depending on 
the level of model personalization. In particular, the modeling may take place either at the group level 
by considering SC matrices averaged over the entire subject cohort, or at the individual level by 
considering personalized models based on individual SC for every subjects separately (Deco et al., 2019; 
Popovych et al., 2021). Further enhancement of the model personalization may be achieved by adding 
into the model additional region-specific and potentially personalized subject-specific features 
extracted from the empirical data such as frequencies and amplitudes of the empirical time series, 
excitation-inhibition balance or distribution of the neuronal receptors (Deco et al., 2019; Demirtas et 
al., 2019; Kringelbach et al., 2020; Domhof et al., 2021; Jung, Eickhoff and Popovych, 2021; Popovych 
et al., 2021). Model personalization can potentially contribute to accurate modeling of brain activity, 
capture subject-specific differences in both structure and dynamics and reflect brain changes related to 
disease states such as epilepsy or Alzheimer’s disease (Jirsa et al., 2017; Bansal, Nakuci and Muldoon, 
2018; Zimmermann et al., 2018). This can be of relevance in the framework of personalized approaches 
in medicine (Falcon, Jirsa and Solodkin, 2016). It is however unclear how the desired personalization of 
the whole-brain dynamical models can be established. 
 
This deliverable contributes to the discussed topic, where the data and model personalization can be 
incorporated into the analysis and modeling workflow already at the level of data processing and signal 
extraction. We thus extended, improved and finalized the pipeline previously developed and reported 
in the Deliverable D3.1 “Initial version of full-scope containerized pipeline developed” (Jung et al., 2020) 
to provide an individualized approach for the neuroimaging data processing. In particular, the new 
version of the pipeline can provide the whole-brain tractography and SC calculated from dwMRI, and 
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blood oxygen level-dependent (BOLD) signals and FC inferred from the resting-state functional MRI 
(fMRI) in the corresponding native spaces. We can thus avoid the complex nonlinear transformation of 
the individual brains to the standard MNI152 space (Evans et al., 2012), which involves unnecessary 
data deformation. The later brain normalization is especially harmful for the brains that notably deviate 
from the template brain, as, for example, in the case of brains with atrophies or injuries, which can 
frequently be observed in clinical data and for older subjects. Furthermore, brain normalization to the 
standard template may to some extent suppress the brain inter-individual variability that can be an 
important feature for differentiation between individual subjects in health and disease. With this 
pipeline we may investigate how the model personalization at the stages of the data processing and its 
modeling can influence the model properties and its outcome. 
 

2. Partners involved 
 
This deliverable was prepared by the Institute of Neuroscience and Medicine (Brain and Behaviour, INM-
7) from the Forschungszentrum Jülich (FZJ). The computational resources were granted through JARA 
on the supercomputer JURECA (Jülich Supercomputing Centre, 2018) at Jülich Supercomputing Centre, 
Forschungszentrum Jülich. 
 

3. Description of work performed 
 
The developed pipeline is an open-source collection of shell scripts based on several well-established 
and freely available software packages that are widely used in the neuroimaging community. It has a 
modular structure, where every module can be executed independently of the others provided that the 
corresponding input data is available. This contributes to the flexibility of pipeline application, in 
particular, as related to selection of parameters and algorithms of the data processing, cleaning and 
signal extraction, which is important for the model-based investigation of brain dynamics. The pipeline 
was tested on different hardware and software environments ranging from single-core desktops and 
local clusters to supercomputers (Jülich Supercomputing Centre, 2018), where the pipeline was 
optimized for parallel processing of several subjects on multi-thread computational nodes. 
Furthermore, the results of the data processing by our personalized pipeline were compared to the 
standard approach involving brain normalization to the MNI152 space as well as to other well-
established pipelines of the neuroimaging data processing. 
 
One of the motivations to develop a personalized pipeline is illustrated in Fig.1, where an example of 
the image pre-processing of a brain with atrophy is shown. The considered brain image exhibits an 
atrophy in the left hemisphere (Fig.1, lower plot), and the nonlinear transformation from the standard 
MNI152 space to the native T1-weighted (T1w) space resulted in a strong deformation of the left side 
of the head (compare colored and gray-scaled images in Fig. 1, upper plot). The normalization procedure 
is apparently unable to account for such an enhanced deviation from the template brain, which is 
supposed to have further impairments on the quality of the consecutive signal extraction, its analysis 
and modeling. 
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Figure 1: Upper plot: Example of the nonlinear image transformation from the MNI152 T1-weighted (T1w) 
template (RGB colors) to T1w image in the native space (gray colors as the background image). Lower plot:  
Example of the brain parcellation (colored regions) based on the classifier of the Schaefer atlas (Schaefer et al., 
2018) with 100 parcels in the native T1-w image space (the same gray-scale background as in the upper plot). The 
white circles indicate brain areas of the atrophy. 
 
To resolve this problem we suggest to process the brain images completely in their native spaces 
without any transformation to the standard space. The main component of such a procedure is an 
appropriate brain parcellation that can be used to compare the extracted signals and connectivities 
across individual subjects. Such a personalized parcellation can be performed with surface-based 
approach to parcel cortical brain areas (Desikan et al., 2006; Fischl et al., 2004). For our goals, it uses 
cortical geometric information in the native space and does not require any nonlinear deformation 
process from the standard to native spaces to bring parcellation information. Subsequently, the 
parcellation via the surface-based method appears to be accurate in the native space as illustrated in 
Fig. 1 (lower plot) for the same subject, where the normalization procedure failed [Fig. 1, upper plot]. 
We thus included the discussed surface-based personalized parcellation in our pipeline to enable the 
data processing and signal extraction in the native spaces. 
 

4. Results 
 
4.1. Pipeline structure 
 
The structure of the developed pipeline is schematically illustrated in Fig. 2. It includes the pre-
processing of T1w images, dwMRI and fMRI data as well as brain parcellation in the native spaces and 
extraction of the whole-brain tractography, SC, BOLD signals and FC. In the pipeline scripts some 
functions of several third-party software packages were used including FSL (Jenkinson et al., 2012), 
MRtrix (Tournier et al., 2019), ANTs (Tustison et al., 2014), FreeSurfer (Dale, Fischl and Sereno, 1999), 
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AFNI (Cox, 1996) and Connectome Workbench (Glasser et al., 2013). Further details on the performed 
main steps of the data processing, utilized software packages and executed functions of the pipelines 
for dwMRI and fMRI data can be found in the previous deliverable D3.1 of 2020 (Jung et al., 2020) The 
difference consists in a new option to extract the signals and calculate the structural and functional 
connectomes in the native spaces. This option can replace the image normalization to MNI152 space, 
which can however also be included in the setup of the pipeline as an optional additional step. The pre-
processing modules 1 and 5 can now be completed by co-registration between T1w and diffusion 
weighted image (DWI) for dwMRI pipeline and between T1w and echo-planar imaging (EPI) for fMRI 
pipeline and then by transforming the parcellation labeling to the corresponding native images. This will 
be sufficient for the atlas-based extraction of SC and BOLD signals (and FC) from the pre-processed 
imaging data in the native spaces. 
 

 
 
Figure 2: Schematic illustration of the pipeline workflow for personalized data processing and signal extraction. 
The independent modules are encircled in enumerated rectangular blocks with performed data processing steps 
indicated, where the operations shadowed in color are used to process T1w images (gray), dwMRI data (light blue) 
and fMRI data (green). The updated parts of the pipelines necessary for parcellations in the native spaces are 
indicated in yellow. The arrows depict the interdependence (required input) between the modules.  
 
4.2. Pipeline performance 
 
The discussed pipeline was applied to process the raw neuroimaging data, parcellate the brain according 
to a given atlas in the native space and extract the structural and functional connectomes. An example 
of the pipeline results is illustrated in Fig. 3. As follows, the parcellation accurately reflects the folding 
structure of the cortex and appropriately splits the gray matter into the parcellated brain regions [Fig. 
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3, upper plot, see also Fig. 1]. The corresponding personalized (i.e., calculated in the native spaces) 
functional and structural connectomes also illustrated in Fig. 3 (lower plots), which represent well the 
hemispheric separation of the functional and structural connectivity and the included subcortical areas 
corresponding the brain regions with indices larger than 100 [Fig. 3]. 
 

 
 
Figure 3: Examples of the pipeline results of the brain parcellation in the native space (upper plot) and extraction 
of the personalized (native) functional and structural connectomes (lower plots) for the Schaefer atlas (Schaefer 
et al., 2018) with 100 brain regions. The connectomes are represented by the resting-state FC, and the matrices 
of the streamline counts and averaged streamline path length between the brain parcels as indicated in the plots. 
 
The structural connectomes extracted by the personalized pipeline can be compared with those 
calculated for the volumetric brain atlases transformed from the standard MNI152 space [Fig. 4]. The 
similarity is high for the streamline count matrices practically for all considered total numbers of the 
streamlines of the whole-brain tractography [Fig. 4, upper plot]. We can however note somewhat 
reduced agreement for smaller tractography density (number of streamlines). The agreement is lower 
for PL matrices [Fig. 4, lower plot], but the sensitivity of the PL matrices is a known property that can 
also be observed for repetitive recalculations of PL matrices by the same or different pipelines (Jung et 
al., 2020). The PL-similarity reported in Fig. 4 is approximately in the same range observed for such 
recalculations. We thus conclude that the personalized pipeline effectively delivers the structural 
connectomes that are close to those calculated by the established approach via a transformation of the 
brain atlases from the standard MNI152 space. 
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Figure 4. Similarity as given by Pearson correlation between structural connectomes calculated either after 
transformation of the atlas from the standard MNI152 space or by the personalized parcellation in the native 
space. The parcellation was performed according to the Schaefer atlas with 100 brain regions, for the several 
tractography densities as given by the total number of streamlines of the whole-brain tractography indicated in 
the legend, and for 20 subjects. The upper and lower plots depict the similarities for the streamline count (SC) and 
PL matrices, respectively.  The dashed color lines indicate mean values of each tractography density conditions (in 
different colors). 
 

 
 
Figure 5: Comparing functional connectomes for several pipelines (the current pipeline, fMRIPrep and SPM) when 
FC was calculated from BOLD signals extracted in the standard MNI152 space. Examples of FC matrices for the 
Schaefer atlas with 100 parcels are illustrated for a few subjects (started from subject #4) in the upper plots with 
the used pipeline indicated. The similarity (Pearson correlation) between FC of different pipelines is shown in the 
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lower plot for several subjects, where the corresponding pairwise comparisons between the pipelines are 
indicated in the legend. 
 
We also evaluate and compare the performance of our pipeline for processing of the resting-state fMRI 
data with a few other widely-used neuroimaging pipelines, in particular, with SPM (Friston, 2008) and 
fMRIPrep (Esteban et al., 2019). A few examples of FC calculated by the considered pipelines in the 
standard MNI152 space are illustrated in Fig. 5 (upper plots). Our pipeline in MNI152 space produces 
FC similar to those of the other pipelines. From the three pairwise comparisons, our pipeline appears to 
be closest to fMRIPrep and then to SPM, see Fig. 5 (lower plots). The outputs of the two well-established 
pipelines, fMRIPrep and SPM are the most distant to each other. These results demonstrate that our 
pipeline performs well in MNI152 space and its output (FC) is similar to other pipelines. 
 

  
 
Figure 6: Performance of the developed pipeline for processing of the resting-state fMRI data the in the EPI native 
space as compared to the data processing in the MNI152 space and transformation between the spaces. Examples 
of the FC matrices for the Schaefer atlas with 100 parcels are shown in the upper plots for the case of volumetric 
parcellation in the standard MNI152 space (denoted as “EPI in MNI” or “MNI volumetric”), transformation of the 
volumetric atlas from the MNI152 space to the native EPI space (denoted as “native volumetric”), and for the 
surface-based parcellation only in the native space (denoted as “native surface”). The similarity (Pearson 
correlation) between FC matrices obtained for the considered cases is illustrated in the lower plot, where 
corresponding pairwise comparisons are indicated in the legend.  
 
The performance of the developed personalized pipeline at the processing for the resting-state fMRI 
data in the native space can be illustrated by comparing FC matrices calculated in different spaces of 
the brain parcellations. We thus consider the brain parcellation by a volumetric atlas in MNI152 space 
(“MNI volumetric”), volumetric parcellation in the native space, where the atlas was transformed from 
MNI152 to the native space (“native volumetric”), and surface-based parcellation in the native space 
only (“native surface”). In all cases, the pipeline produces similar results as can be observed for the 
patterns of the functional connectomes [Fig. 6, upper plots], which is also confirmed by high Pearson 
correlations between FC matrices [Fig. 6, lower plot]. FCs obtained by personalized calculations (i.e., in 
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the “native surface” case) have connectivity patterns that are closest to those calculated in the standard 
MNI152 space [Fig. 6, lower plot, red bars] and then to those obtained after the transformation of 
volumetric atlas from MNI152 to native space. Based on the presented results we conclude that the 
personalized processing of the resting-state fMRI data and connectivity calculation in the native space 
are stable and do not strongly deviate from the results obtained by an established approach in the 
standard MNI152 space. 
 

#subjects 
(threads) 

structural pipeline functional pipeline 

time(min) speedup time(min) speedup 

4 (64) 361.1 1.0 253.7 1.0 
8 (32) 359.0 2.0 262.6 2.1 
16 (16) 371.5 3.9 268.0 4.2 
32 (8) 411.9 7.0 295.0 8.1 
64 (4) 480.2 12.0 365.5 15.9 

 

 

    

Table 1: Speedup values of the scaling illustrated in Fig. 
7. The number of threads assigned to each subject are 
indicated in parentheses.  

 
Figure 7: Scaling behavior of the structural (upper 
plot) and functional (lower plot) pipelines on one 
node of CPU partition of JURECA-DC by parallel 
processing of several subjects. 

 
The pipeline was tested and optimized for execution on the high-performance clusters in order to 
process large subject cohorts. The performance and the scaling of the pipelines on JURECA-DC CPU 
nodes (Jülich Supercomputing Centre, 2018) at Jülich Supercomputing Centre, Forschungszentrum 
Jülich were evaluated and illustrated in Fig. 7 and Table 1, where the parallelized part p of the code 
according to Amdahl’s law is also indicated. The optimal configurations of both (structural and 
functional) pipelines is realized when 64 subjects were simultaneously processed on one CPU node with 
256 threads (4 threads per task/subject). The number of subjects was mostly limited by the memory 
usage, where approximately 8GB were at least necessary to process one subject, i.e., 64 subjects fit to 
512GB of the node memory. 
 
4.3. Surface-based parcellation 
 
In the case when a given atlas of interest does not provide a classifier necessary to parcel cortical areas 
on the surface in the native T1w space, we can also train the corresponding classifier. This can be 
accomplished for a given subject cohort when a volumetric parcellation is applied to individual brains in 
the standard MNI152 space, which then are used to create a classifier. For example, Fig. 8 illustrates the 
process of creating a classifier based on transformed volumetric images from the MNI153 space for the 
Harvard-Oxford atlas that is distributed in the volumetric format in the standard space. Based on 
individual volumetric labeled images, the labels can be projected on the vertices of cortical surfaces [Fig. 
8A]. The vertices of individual cortical surfaces can be matched as the same geometric locations across 
subjects. Accordingly, the labels on the vertices can be summarized to have the most frequent label as 
representative ones. Subsequently, we have the representative annotation on the vertices based on the 
used subject sample. The annotation file is used to generate a classifier. 
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A 

 

 B 

 

Figure 8: Calculation of the atlas classifier necessary for surface-based brain parcellation in the native space. (A) 
Schematic illustration that volumetric parcellations in the standard space of several subjects can be used to build 
a classifier. (B) Examples of the brain parcellations in the native space obtained by training the classifier from the 
volumetric Harvard-Oxford atlas with 0% (right plots) and 25% (left plots) maximal probability thresholds. 
 
Following the above procedure, we created the classifiers of the Harvard-Oxford atlas for each 
hemisphere, see Fig. 8B, where annotation examples corresponding to different levels of 0% or 25% of 
the maximal probability threshold were used for the Harvard-Oxford atlas. In the case of 25% 
thresholding, one can observe some empty vertices (gray color in Fig. 8B) due to compact cortical 
volumes on the MNI152 space, which can give relatively thinner cortical gray matter caused by some 
strong deformation during inverse-normalization. In contrast, the 0% thresholding gives relatively large 
region volumes which can cover much more vertices and the empty vertices are practically absent. 
Therefore, we used 0% thresholding to create the classifiers of the Harvard-Oxford atlas. Our pipeline 
includes the corresponding scripts for the training of the classifiers for a volumetric atlas in the standard 
space and for a given cohort of subjects. 
 
4.4. Model simulations 
 
Empirical structural connectomes extracted by the discussed personalized pipeline for a given brain 
parcellation were used to derive the model network. The normalized streamline counts between any 
two brain regions were considered as the corresponding coupling strength between the respective 
network nodes, and the average path lengths were used to calculate the time delay of signal 
propagation between the nodes. Equipping the individual nodes by local dynamics allow then to 
generate simulated BOLD signals and thus calculate a simulate FC. The latter will be compared with 
empirical FC again calculated by the personalized pipeline, and the model parameters are optimized in 
order to obtain the strongest correspondence between the simulated and empirical data [Fig. 9, upper 
left]. This constitutes the model validation. Such optimal model parameters of the largest goodness-of-
fit values as given by Pearson correlation between simulated and empirical FC are illustrated in Fig. 9 
(lower left). Examples of the empirical and simulated BOLD and FC for the validated model are illustrated 
in Fig. 9 (middle and right columns). One observes that the simulated data can relatively well correspond 
to the empirical data, and the optimal parameters are in a biologically feasible range, e.g., the global 
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time delay in coupling. Based on the obtained results we conclude that the pesonalized pipeline is ready 
for application, and the extracted data, e.g., connectomes calculated in the native spaces can be used 
for personalized modeling of the resting-state brain activity. 
 

 
 
Figure 9: Example of the whole-brain modeling workflow based on the personalized data processing and signal 
extraction. The connectivity matrices SC, PL and FC are extracted from the empirical neuroimaging data and used 
for model derivation and validation. Lower left plot: The optimal model parameters of the maximal similarity 
between empirical and simulated FC. Middle column: examples of the empirical and simulated BOLD signals for 
the optimal model parameters. Right column: Examples of the empirical and simulated FC matrices of their best 
fit to each other.  
 

5. Conclusion, next steps 
 
We developed the next version of the pipeline that can be used for pre-processing of the neuroimaging 
data in the native spaces of the brain images without involving a complex nonlinear transformation to 
the standard MNI152 space. This is supposed to reduce the complex manipulation with data and 
facilitate the investigation of the inter-individual differences. The normalization of the brain images to 
the standard space may also fail, especially, for the clinical data or for older population, where the brain 
atrophy or other reasons may strongly deviate the brain images from the standard template. We 
showed that the developed pipeline performs relatively well when comparing to other widely used 
pipelines as well as to the standard approach designed to involve the data normalization to the standard 
space and brain parcellation in the MNI152 space. An essential condition for such a personalized data 
processing, analysis and modeling is a brain parcellation in the native space that can be realized via a 
surface-based brain parcellation. The presented pipeline includes several such parcellations known from 
the literature. Moreover we also developed a corresponding approach and included the respective 
script in the pipeline for training a classifier for personalized brain parcellation if a volumetric atlas 
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defined in the standard MNI152 space is available. The developed pipeline was also successfully tested 
for the whole-brain modeling of the resting-state brain activity. The pipeline is available in dedicated 
projects on GitHub. The repositories contain all code and documentation necessary to apply the pipeline 
to the pre-processing the neuroimaging data and extraction of the signals including the whole-brain 
tractography, SC, BOLD signals and FC: 
 

https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline 
 
The next steps may include the investigation of the interindividual differences in health and disease and 
therefore involving clinical data for processing with developed personalized pipeline. The obtained 
empirical data, e.g., structural and functional connectomes can be used for personalized model-based 
investigation of the resting-state brain and its connection to behavior. The modeling results can be 
related to the phenotypical data of the patients and healthy controls in order to better understand the 
differences between diseased and healthy brain states, differentiation between them and, ultimately, 
suggest and test possible therapeutic intervention. 
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