
 

 

 

 

  
 
 
 
 

 
    

VirtualBrainCloud 
Personalized Recommendations for  
Neurodegenerative Disease 
 
 
 
 

 

  

 
 
 

 

  
 
Public deliverable report 
D3.11: Multi-resolution TVB models with evidence  
            for optimal granularity 
 

 

 
 

 

 
 

 

Date May 2023  

Authors 
Institute of Neuroscience and Medicine (INM-7; Brain and Behaviour) 
Forschungszentrum  
Oleksandr V. Popovych, Justin W.M. Domhof, Simon B. Eickhoff 

 

 © VirtualBrainCloud consortium  
   
Dissemination level: public  
Website www.VirtualBrainCloud-2020.eu  

 
 
 
  

 

This project has received funding from the European Union´s Horizon 2020 
research and innovation programme under grant agreement No 826421  

www.VirtualBrainCloud-2020.eu 

Ref. Ares(2023)5272673 - 30/07/2023



              

                                  2 of 23 

Table of content 

 

Background .................................................................................................................................................. 3 

1. Introduction ............................................................................................................................................. 3 

2. Partners involved ..................................................................................................................................... 5 

3. Description of work performed .............................................................................................................. 5 

3.1. Inter-parcellation and inter-individual variability ............................................................................ 6 

3.2. Reliability and subject specificity ..................................................................................................... 7 

4. Results ..................................................................................................................................................... 9 

4.1. Impact of atlas granularity on empirical and simulated data ....................................................... 10 

4.2. Generalization for more models, parcellations and network properties ..................................... 13 

4.3. Reliability and subject specificity of the modeling results ............................................................ 15 

5. Conclusion ............................................................................................................................................. 20 

6. References ............................................................................................................................................. 21 

 

 



© VirtualBrainCloud | public report 

3 of 23   

Background 
 

The current deliverable is developed in the framework of the VirtualBrainCloud project that is dedicated 
to investigation and application of the brain modeling, big data and high-performance computing to 
personalized prevention and treatment of neurodegenerative diseases. Here, the personalized brain 
modeling by dynamical whole-brain models plays an important role, which can bridge a gap between 
the brain structure and function with a great potential for mechanistic explanations of brain dynamics 
and function and hypothesis testing in cilico. The data-driven modeling approaches are in active 
development nowadays, where the empirical neuroimaging data are used for the model derivation and 
validation. Following the main ideas in the brain research representing the brain as a collection of 
networks of functional units, the network-based dynamical models essentially involve brain atlases that 
relay on a priori knowledge on the brain organization and function. They parcel the brain into separate 
regions according to dedicated algorithms with different levels of granularity, which serve as a backbone 
for the model networks. However, little is known about the impact of brain parcellations on the 
empirical data used for the modeling and on the modeling outcomes. This deliverable aims at 
investigation of the effect of brain parcellations and their granularity in particular on the properties of 
empirical and simulated connectomes, validation quality of the whole-brain dynamical models and 
reliability and specificity of the modeling results.  
 

1. Introduction 
 
The widely-used connectivity-based approaches to investigate the complex brain structure and function 
suggest to represent the brain as a collection of structural or functional networks, where nodes 
encapsulate brain regions while edges consolidate the structural or functional connectivity among these 
regions, respectively (Park and Friston, 2013; Schaefer et al., 2018; Messe, 2019; Zimmermann et al., 
2019; Pervaiz et al., 2020). Brain regions can be delimited using a parcellation, i.e., brain atlases whose 
properties are in the focus of the contemporary brain research (Eickhoff, Yeo and Genon, 2018). 
However, the great variety of possible techniques for brain parcellation and existing brain atlases makes 
the choice of a particular parcellation very difficult, and there is no consensus on which brain atlas is 
more adequate for a given analysis (Thirion et al., 2014; Eickhoff, Constable and Yeo, 2018; Eickhoff, 
Yeo and Genon, 2018). The choice of an appropriate brain parcellation is one of the main issues also for 
the modeling of the resting-state brain dynamics by whole-brain dynamical models (Ghosh et al., 2008; 
Honey et al., 2009; Popovych et al., 2019). Indeed, the derivation and validation of the models 
essentially utilize the empirical structural and functional connectomes, whose calculations in turn are 
based on a given parcellation of the brain into separate regions.  
 
Several studies addressed the properties of the brain parcellations with application to empirical 
neuroimaging data. For example, a few clustering approaches were applied to the task-based functional 
magnetic resonance imaging (fMRI) data and compared with respect to their accuracy and 
reproducibility (Thirion et al., 2014). It was in particular found that the reproducibility can peak at about 
~200 clusters, whereas the accuracy seemed to monotonically increase up to ~5000 clusters. The two 
criteria thus diverge imposing a trade-off choice between accuracy and stability. A systematic 
comparison between many anatomical, connectivity-driven and random parcellation methods was also 
conducted with application to the resting-state functional connectivity (FC) of fMRI data according to a 
few criteria including reproducibility, fidelity, agreement with fMRI task activation, myelin maps, and 
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cytoarchitectural areas, and network analysis (Arslan et al., 2018). The study did not found any optimal 
parcellation method capable to address all the challenges simultaneously, where the most of the 
evaluated measures monotonically vary with respect to the number of parcels. However, the considered 
network measures like clustering coefficient, characteristic path length and the average node degree 
exhibit some optimality at the granularity of about ~150-200 parcels, but not the small-world index 
(Arslan et al., 2018). In contrast, the network properties of the structural connectivity (SC) calculated by 
the whole-brain tractography (WBT) from the diffusion-weighted MRI (dwMRI) again manifested a 
monotonic dynamics with respect to the parcellation granularity (Zalesky et al., 2010). Other recent 
studies have reported empirical evidence for the effects of atlas selection on subject specificity, 
structure-function relationship and data-driven prediction of behavioral traits (Messe, 2019; 
Zimmermann et al., 2019; Pervaiz et al., 2020). In particular, the structure-function relationship 
between SC and the resting-state FC was shown to exhibit a monotonic decay as the number of regions 
in the considered state-of-the-art brain atlases increased.  
 
As follows, already for the empirical neuroimaging data and empirical connectomes there is no general 
consensus as to which parcellation and which granularity would be most appropriate for a given analysis. 
The situation is more involved for the data-informed whole-brain models, where the empirical SC and 
FC are used for the model derivation and validation. The models thus inherit all problems of the 
empirical data in addition to the complicated procedures of model validation and parameter 
optimization. Only a few studies addressed this question. The influence of parcellation granularity and 
local connectivity on slow and fast dynamics of coupled neuronal mass models was investigated in paper 
(Proix et al., 2016) for a random splitting of the Desikan-Killiany atlas (Desikan et al., 2006) into smaller 
subregions. The data processing parameter of the number of streamlines in the WBT was shown to be 
important for the quality of the model fitting, which was affected by selected brain parcellation (Jung, 
Eickhoff and Popovych, 2021). The inter-subject and inter-parcellation variability of the goodness-of-fit 
(GoF) values of the model to the empirical data was investigated for 11 and for 19 state-of-the-art 
parcellations in our recent papers  (Popovych et al., 2021) and (Domhof et al., 2021), respectively. It was 
in particular shown that the statistical data indices and the graph-theoretical network properties of 
empirical connectomes can well account for the inter-parcellation variability of the modeling results. 
However, only the former can also well explain the inter-subject model variability, which strongly 
depends on the selected brain parcellation. Given such an enhanced model variability, we also 
investigated the test-retest reliability and subject specificity of the modeling results and showed that 
the simulated FC can outperform the empirical FC in terms of both reliability and subject specificity, 
which again depends on the considered brain parcellation (Domhof, Eickhoff and Popovych, 2022b). An 
appropriate selection of the brain parcellation is also crucial for improved classification of the patients 
with Parkinson’s disease from the healthy subjects with involvement of the whole-brain dynamical 
models (Jung et al., 2022).  
 
In the current deliverable we illustrate the impact of the brain parcellations on the empirical data and 
modeling results. We initiated such an investigation in the previous deliverable D3.09 “Evaluation of 
cross-model atlas-based compression for machine learning” (Domhof et al., 2020) and enhanced it in 
the next deliverable D3.10 “Framework for multi-modal integrated annotations established and in use” 
(Popovych and Eickhoff, 2021). In the current report we focus more on the impact of the parcellation 
granularity on the neuroimaging data used for the modeling as well as on the modeling results. We show 
that the parcellation granularity can contribute to the variability of the averaged GoF values of the 
model across different parcellations. However this factor can only partially explain the inter-parcellation 
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heterogeneity of the empirical data and the modeling results, and the observed parcellation-induced 
deviations typically go beyond a simple relationship with the number of parcels. The variability in the 
modeling results as reflected by their GoF values, reliability and subject specificity is still large across 
parcellations with similar granularity, which indicates that other parcellation properties like modality of 
the neuroimaging data (structural/functional) and algorithms employed for the parcellation must be 
taken into account for a better explanation of the impact of brain parcellation of the empirical and 
simulated data.  
 

2. Partners involved 
 
This deliverable was prepared by the Institute of Neuroscience and Medicine (Brain and Behaviour, INM-
7) from the Forschungszentrum Jülich (FZJ). The computational resources were granted through JARA 
on the supercomputer JURECA (Jülich Supercomputing Centre, 2021) at Jülich Supercomputing Centre, 
Forschungszentrum Jülich. 
 
 

3. Description of work performed 
 

 
Figure 1. Derivation and validation of a whole-brain dynamical model. First, brain regions parcellated according to a given 
brain atlas serve as nodes in the model network (upper left), where the inter-node connections are extracted from the 
empirical SC calculated from the WBT and dwMRI data (upper right). Second, the empirical FC (eFC) of the atlas-based 
network of regions is computed via correlating the resting-state mean blood oxygen level-dependent (BOLD) signals of any 
two parcels (lower left). Third, simulated FC (sFC) is calculated via correlating the simulated BOLD time series generated for 
each network node by the derived model (lower right). Finally, the model parameters are optimized by model fitting to 
empirical data in such a way that the sFC approximates the eFC as closely as possible. 

 
The derivation and validation of the whole-brain dynamical models is schematically depicted in Figure 
1. Brain parcellation is used to split the brain into separate regions that define the nodes of a model 
network (Ghosh et al., 2008; Honey et al., 2009; Popovych et al., 2019). The inter-nodes connections 
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are derived from the empirical SC (matrices of streamline counts and averaged streamline pathlength) 
calculated according to a given parcellation by the WBT from dwMRI, which constitutes a so-called brain 
structural connectome (Sporns, Tononi and Kotter, 2005). Each node of the model network is equipped 
by local dynamics that is governed by a dynamical system modeling in such a way the averaged 
(neuronal) activity of the respective brain region. We considered several brain parcellations based on 
the structural and functional brain properties and several dynamical models for the local dynamics 
including phase and limit-cycle oscillators, Wilson-Cowan neural mass model and reduced Jansen-Rit 
model, see Refs. (Domhof et al., 2021; Jung, Eickhoff and Popovych, 2021; Popovych et al., 2021; 
Domhof, Eickhoff and Popovych, 2022b; Jung et al., 2022) for model details. The considered model was 
used to generate simulated blood oxygen level-dependent (BOLD) signals that were used to calculate 
other derivatives, for example, simulated FC by pairwise correlations of the BOLD signals of any two 
oscillators in the ensemble modeling the dynamics of the parcellated regions in the brain. The model 
was validated by comparing the simulated and empirical data, where the model parameters were 
optimized in order to obtain the closest correspondence between the model output and the respective 
empirical counterpart. For example, the correlation between simulated and the resting-state empirical 
FCs can be maximized by optimization of the model parameters  and considered as a goodness-of-fit 
(GoF) of the model to empirical data for further analyses together with the optimal model parameters.  
 
3.1. Inter-parcellation and inter-individual variability 
 
In this deliverable we first illustrate how the parcellations may impact the distribution of GoF values for 
individual subjects. We compared these distributions between 11 different parcellations of different 
granularities of three brain atlases as given by the Schaefer atlas (Schaefer et al., 2018), the Harvard-
Oxford atlas (Desikan et al., 2006) and the Shen atlas (Shen et al., 2013). Several parcellations of these 
atlases were considered: the Schaefer atlas with 100, 200, 400 and 600 cortical parcels (denoted as 
S100, S200, S400 and S600, respectively), the Shen atlas with 79, 156 and 232 cortical regions (denoted 
as Shen79, Shen156 and Shen232), and the probabilistic Harvard-Oxford atlas with 96 non-overlapping 
cortical parcels with thresholds at 0%, 25%, 35%, and 45% of the maximal probability (denoted as HO96 
0%, HO96 25%, HO96 35%, and HO96 45%, respectively). For the higher thresholding, voxels that did 
not reach the threshold level were excluded, which makes the parcellated brain regions smaller as the 
threshold increases. 
 
To evaluate the impact of brain parcellations on the statistical properties of the resting-state brain 
dynamics and connectivity, several data indices (or data variables) were calculated from the empirical 
data used for the model derivation and validation. For example, the standard deviation (denoted here 
as ‘std’) of time fluctuations of BOLD signals was calculated first and then averaged (denoted here as 
‘aver’) over all parcels. The obtained data variable denoted as aver[std(BOLD)] is an average extent of 
BOLD fluctuation for a given subject. The operations of ‘std’ and ‘aver’ can be applied in different 
combinations to the empirical FC and SC. For example, the extent of total averaged functional 
connectivity (average synchronization between any two regions) in the brain is aver[aver(eFC)] or it’s 
inter-regional variability is std[aver(eFC)]. Such an approach was also applied to the structural 
connectomes (streamline counts – eSC and averaged streamline pathlength – ePL), see Ref. (Popovych 
et al., 2021) for details. Also the structure-function relationship corr(eFC, eSC) between empirical 
functional and structural connectivities was evaluated by Pearson correlation involving ePL as well. 
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The GoF values were then compared with the statistical data indices calculated from the empirical data 
in order to explain where the inter-subject and inter-parcellation variability of the modeling results may 
come from. The results were obtained for two models of the local dynamics based on the phase and 
limit-cycle oscillators that directly modeled the ultra-slow oscillations of the resting-state BOLD signals.  
 
Table 1: Overview of the used brain parcellation schemes with the index for reference in this study, the number of 
parcels (#parcels) and associated publications. Colors are used to highlight the parcellations in Figure 5. 
Index Name #parcels Refs. (see (Domhof et al., 2021) for more details) 
1 MIST 31 (Urchs et al., 2019)  
2 56 
3 103 
4 167 
5 Craddock 38 (Craddock et al., 2012) 
6 56 
7 108 
8 160 
9 Shen 2013 79 (Shen et al., 2013) 
10 156 
11 Schaefer (17 networks) 100 (Schaefer et al., 2018) 
12 200 
13 Harvard-Oxford 48 (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 

2007; Makris et al., 2006) 14 96 
15 Desikan-Killiany 70 (Desikan et al., 2006) 
16 von Economo-Koskinas 86 (Scholtens et al., 2018;  

von Economo and Koskinas, 1925) 
17 AAL (version 2) 92 (Rolls et al., 2015; Tzourio-Mazoyer et al., 2002) 
18 Destrieux 150 (Destrieux et al., 2010) 
19 Brainnetome 210 (Fan et al., 2016) 
 
The obtained results were generalized for 19 parcellations (Table 1), for the phase oscillators and 
Wilson-Cowan model, and for the graph-theoretical network properties served as data indices to 
account for the inter-parcellation and inter-individual variability of the empirical data and modeling 
results. We thus extracted some network metrics from the empirical SC and PL and the empirical and 
simulated FC matrices. To be specific, we determined the degree distribution and the modularity of the 
empirical SC and both types of FC to characterize their centrality and segregation, respectively. In 
addition, we calculated the closeness centrality distribution and the global efficiency of the ePL matrix 
as representations of its centrality and integration, respectively. Furthermore, we calculated the 
clustering coefficients from the empirical SC and FC and the characteristic path lengths from the 
empirical PL and FC matrices, see Refs. (Rubinov and Sporns, 2010; Domhof et al., 2021) for details.  
 
3.2. Reliability and subject specificity 
 
To study the inter- and intra-subject variability of the modeling results in more detail we investigated 
the impact of brain parcellation on the test-retest reliability and subject specificity of the modeling 
results and their relation to empirical data. We used the empirical connectomes of the previous study 
that have already been published elsewhere (Domhof et al., 2022b). In particular, we used the empirical 
SC and FC matrices of  subjects from the Human Connectome Project (HCP) S1200 release 
dataset (Van Essen et al., 2013) that were reconstructed on the basis of 8 different parcellations from 
Table 1 with the indices 3 (MIST), 7 (CD), 9 (Shen), 11 (Sch.), 14 (HO), 15 (DK), 16 (EK), and 17 (AAL). 
Here, each parcellation has a similar number of N brain regions, and each subject has M = 4 different 
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empirical FCs that correspond to the 4 separate resting-state fMRI sessions included in the original (HCP) 
dataset for each subject.  
 

 
Figure 2. Schematic illustration of the methodology used to evaluate the test-retest reliability and subject specificity of the 
empirical and simulated connectomes. (A) Dynamical whole-brain models were used to sample the simulated FC matrices 
that replicated the empirical FC as well as possible. (B) The upper triangles of the empirical SC, empirical FC and simulated FC 
matrices of dimension N x N were vectorized to vectors of N(N-1)/2 elements. (C) These vectors were gathered into datasets 
of MS vector columns that contained the individual connectomes of all S subjects and their M separate fMRI sessions. (D) The 
connectome datasets were (cross-)correlated, where the obtained cross-correlation matrices of dimension MS x MS were 
used to quantify the inter- and intra-subject similarities/differences between individual connectomes. (E) The cross-
correlation matrix is illustrated here for 3 subjects (sbj.) (S = 3, M = 4), where the inter- and intra-subject correlations (blue 
and orange matrix elements, respectively) were collected in separate vectors. Their medians were bootstrapped 10,000 
times.  

 
We investigated the inter- and intra-subject variations of the empirical SC, the empirical FC, the 
simulated FC and their single- and bi-modal relationships (correlations). To do so, we vectorized the off-
diagonal upper triangles of the connectivity matrices (Figure 2A-B), and gathered the resulting vectors 
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of all S subjects in one dataset separately for each type of connectivity and parcellation (Figure 2C). 
Here, as there was only one realization of the empirical SC available, we repeated the vectors of the 
empirical SC matrix M times (M being the number of resting-state fMRI sessions per subject) to match 
the dimensions of the datasets of the other connectivity types. Subsequently, we calculated the Pearson 
correlation coefficients across the individual connections between these datasets. The result comprised 
a number of MS x MS (cross-)correlation matrices that correspond to either one of three types of 
correlations: single-modal correlations, structure-function correlations and model fit correlations 
(Figure 2D). The single-modal correlations are the correlations between the same type of connectivity 
(e.g. empirical FC vs. empirical FC). They characterize the reproducibility of the connectivity matrices. 
The structure-function correlations are the cross-correlations of the empirical SC with the empirical FC 
or the simulated FC, and the model fit correlations comprise the correlations between the empirical and 
the simulated FC. The latter two types of correlations quantify the extent to which the different types 
of connectivity have mutual patterns. 
 
The within-subject, single-modal correlations characterize whether model fits are realized through 
converging connectivity patterns of simulated FC. However, these patterns may be more similar in 
general, that is, also across different subjects. We therefore calculated the specificity index Specificity, 
where the mean between-subject correlation Corrbetween was subtracted from the mean within-subject 
correlation Corrwithin: Specificity = Corrwithin - Corrbetween, which is similar to the approach of Refs. (Amico 
and Goni, 2018; Zimmermann et al., 2019). The specificity index reflects whether connectomes are 
indeed reproduced better (more similar to each other) within than between subjects and can be used 
to quantify the subject specificity. To assess the variations in the subject specificity (or the differences 
between the median inter- and intra-subject correlations), we bootstraped the median correlations 
many times (Figure 2E). The subject-specificity index (correlation difference) is then calculated for each 
bootstrap so that its 95% confidence interval can be constructed, which in turn reveals whether the 
observed differences are significant. 
 
We also used the intraclass correlation (ICC) to characterize the reliability of the simulation results 
obtained during the model validation, when the simulated data were fitted to empirical data, in 
particular, the simulated FC and the corresponding empirical FC. Here, the ICCs were calculated for the 
weights (correlation coefficients) of every N(N-1)/2 undirected edges of the functional connectomes 
(empirical and simulated). The calculated ICC reflects the between-subject variance of these quantities 
relative to the total variance (between- and within-subject), and is given by the following expression 
(Liljequist, Elfving and Roaldsen, 2019): ICC = σ2

subject/(σ2
subject + σ2

ε). Here, σ2
subject is the variance of the 

considered quantity (connectome edge weight) that is related to the variance among the subjects, and 
σ2

ε is the residual variance induced by the different fMRI acquisitions. Such an implementation of the 
ICC has been recommended for the case when no convincing argument can be made that the residual 
noise contains additional consistent effects, and we wielded the equations proposed by (Liljequist, 
Elfving and Roaldsen, 2019) in order to calculate the ICC directly from the data.  
 

4. Results 
 
Here we present 3 studies (Domhof et al., 2021; Popovych et al., 2021; Domhof, Eickhoff and Popovych, 
2022b) that considered different numbers of parcellations and investigated their impact on the 
empirical data and modeling results. We especially focus on the impact of parcellation granularity on 
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the modeling outcomes. Below we show that while some optimal granularity could be observed for 
some particular atlases and model fitting modalities, the general trend may indicate that the best model 
fit with the enhanced similarity between simulated and empirical data could be achieved for small 
number of brain parcels. The latter can account for the models’ variability across brain atlases to a 
limited extent, and the other properties of the parcellations and their effects should be investigated for 
a better understanding of the modeling results. 
 
4.1. Impact of atlas granularity on empirical and simulated data 
 
Here we illustrate the impact of brain parcellations and their granularity on GoF values of the whole-
brain dynamical models based on the phase and limit-cycles models for local dynamics, see 
Ref. (Popovych et al., 2021) for more details. As mentioned above the brain parcellations were given by 
the Schaefer atlas (Schaefer et al., 2018) of 100, 200, 400 and 600 cortical regions (S100, S200, S400 
and S600), the Harvard-Oxford atlas (Desikan et al., 2006) with the maximal probability thresholds at 
0%, 25%, 35%, and 45% (HO96 0%, HO96 25%, HO96 35%, and HO96 45%) and the Shen atlas (Shen et 
al., 2013) of 79, 156 and 232 cortical regions (Shen79, Shen156 and Shen232). The resting-state 
dynamics was simulated for 272 unrelated HCP (Van Essen et al., 2013) subjects.  
 
The impact of these parcellations on the quality of the functional model validation is illustrated in Figure 
3A-D, where the simulated FC (sFC) was fitted to the empirical FC (eFC) such that the correlation 
between sFC and eFC was maximized by optimization of the model parameters. The distributions of the 
GoF values of the strongest correlation between sFC and eFC (denoted by Fit(sFC, eFC)) for individual 
subjects are depicted for the considered brain parcellations in Figure 3A and C. The impact of the 
parcellations is apparent when comparing the differences between Fit(sFC, eFC) for the Schaefer atlas 
(S100-S600, blue violins), the Harvard-Oxford atlas (HO96 0%-45%, yellow - dark red violins) and the 
Shen atlas (Shen79-Shen232, green violins) [Fig. 3A, C]. In the latter cases (HO96 and Shen) the both 
models demonstrate much higher fitting to the empirical data with respect to S100-S600 cases with up 
to 80% of the relative increase of Fit(sFC, eFC). The differences in the model fitting can also be observed 
between the parcellations of the same type, i.e., from the same atlas. In particular, the best fit for the 
Schaefer atlas was obtained for S200 case providing an optimal spatial scale, i.e., optimal granularity for 
this brain atlas (Figure 3A). However, the differences between Fit-values for different parcellations of 
the Schaefer atlas are small. For the other considered atlases Fit(sFC, eFC) monotonically decays when 
the threshold for HO96 atlas or the number of parcels for the Shen atlas increases [Figure 3A , C]. 
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Figure 3. Results of (A-D) the functional and (E-H) structure-functional model fitting for (A, B, E, F) the phase model and (C, 
D, G, H) the limit-cycle model. (A, C, E, G) Distributions of the GoF values referring to the maximal similarity (correlation) 
between (A, C) sFC and eFC (Fit(sFC, eFC)) and (E, G) sFC and eSC (Fit(sFC, eSC)) as violin plots for the considered brain 
parcellations denoted on the horizontal axes as introduced in the text, where the medians and the interquartile ranges are 
also shown. (B, D, F, H) Outcomes of statistical comparisons, where the p-values (corrected for multiple comparisons) of the 
paired Wilcoxon signed-rank test of (B, D) Fit(sFC, eFC) and (F, H) Fit(sFC, eSC) values between the parcellations indicated on 
the axes are depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with p < 0.05 (indicated by 
arrow on the color bar) in favor of the alternative hypothesis Fit(row) > Fit(column) for parcellations in the row and column, 
respectively, where the corresponding cell is dark (small p-value) and contains the inequality sign “>”. 

 
Results of systematic statistical comparisons of Fit(sFC, eFC) between any two  considered simulation 
conditions (11 parcellations) are illustrated in Figure 3B and D. Here, the p-values of the paired Wilcoxon 
signed-rank tests are depicted in color for comparisons between Fit-values of different parcellations. 
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The dark color (darker than yellow) at the intersection of a particular row and column (table cell) of the 
shown matrices indicates that the GoF values for the condition from the vertical axis Fit(row) are 
statistically larger (with p < 0.05 at least) than those of for the condition from the horizontal axis, 
Fit(column), accordingly. For example, the cells at the intersection of the row “S200” and columns 
“S100”, “S400” and “S600” are dark implying p < 0.05 and marked by “>” (Figure 3B, D) implying 
Fit(S200) > Fit(S100) as well as Fit(S200) > Fit(S400) and Fit(S200) > Fit(S600). Based on these 
calculations, we also confirm that the quality of the model fitting is the best for the largest region sizes 
for the Harvard-Oxford atlas (see the row “HO96 0%” and its intersections wit the other “HO96”columns 
in Figure 3B and D) and decays for larger probability threshold, i.e., smaller regions for the Harvard-
Oxford atlas. Similar is also true also for the Shen atlas, where smaller number of brain regions is 
beneficial for the model fitting to the empirical data [Figure 3B and D]. Shen79 provides the best fit for 
both models, whereas the lowest goodness-of-fit was obtained for S100 for the phase model and for 
S400 and S600 for the LC model, see the row “Shen79” and columns “S100”, “S400” and “S600” in Figure 
3B and D. 
 

 

Figure 4. Correlation between the results of the model fitting (GoF) and data variables (data indices) at the group level. 
Scatter plots of the medians (across individual subjects) of some data variables versus (A, B) Fit(sFC, eFC) and (C, D) Fit(sFC, 
eSC) with the corresponding regression lines. Each plot symbol corresponds to one of the considered parcellations from 
Figure 3. The fractions of the explained variance (squared correlation) for both models of the phase and limit-cycle oscillators 
are indicated in the legends. 

 
The situation is different for the structure-functional model validation illustrated in Figure 3E-H, where 
the simulated FC (sFC) was fitted to the empirical structural connectome (eSC) such that the correlation 
between sFC and eSC (streamline count) was maximized by optimization of the model parameters. The 
distributions of the GoF values of the best fitting between sFC and eSC (denoted by Fit(sFC, eSC)) are 
depicted in Figure 3E and G, and the results of statistical comparisons between different parcellations 
is shown in Figure 3F and H. In contrast to the functional model validation, the best structure-functional 
model fit takes place for the lowest number of parcels (coarsest granularity) S100 for the Schaefer atlas. 
For the Harvard-Oxford atlas, the best model fit takes place either for moderate (phase model, Figure 
3E, F) or smallest (limit-cycle model, Figure 3G, H) region sizes (moderate and largest probability 
thresholds, respectively), which again differs from the results for the functional fitting (Figure 3A-D). 
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To understand the origin of the observed variation of the fitting results across brain parcellations, we 
suggested to evaluate how the Fit-values depend on a few data variables (or data indices) reflecting 
some statistical properties (Sec. 3.1) of the empirical data used for the model derivation and validation. 
We thus correlated the medians (calculated across all subject in the sample) of the Fit-values and the 
considered data variables across parcellations, and the results of the calculations are illustrated in Figure 
4. Several data variables exhibit strong correspondence with the Fit-values for both models. However, 
only a few of them are significantly correlated with the GoF values. For the functional modal fitting, only 
two data indices std[aver(eFC)] and corr(eFC, eSC) significantly and strongly contribute to the inter-
parcellation variance of Fit(sFC, eFC) at the group level for both models [Figure 4A, B], where the fraction 
of the explained variance can reach 93%. For the structure-functional model fitting, more data variables 
significantly correlate with the maximal similarity Fit(sFC, eSC), but only four of them fulfill this 
requirement for both models simultaneously: corr(eFC, eSC) that also contributes to Fit(sFC, eFC), as 
well as data variables aver[std(eSC)], std[aver(ePL)] and aver[std(ePL)] calculated from the structural 
connectome as given by eSC and ePL matrices. The former two data indices are illustrated in Figure 4C 
and D. Again, the fraction of the explained variance can reach 93% for the data index calculated from 
eSC (Figure 4C, D). Interestingly, the empirical structure-function relationship corr(eFC, eSC) positively 
correlates with the variations of GoF values for both considered model fitting modalities (Figure 4B-C). 
Therefore, if we are interested in finding the most appropriate brain parcellation and its granularity 
leading to the highest quality of the model validation, we may inspect the impact of the parcellations 
on this empirical data variable and search for the largest structure-function relationship.  
 
4.2. Generalization for more models, parcellations and network properties 
 
In this section we extend our consideration to more whole-brain models based on the coupled phase 
oscillators and neuronal mass models as well as to more brain parcellations listed in Table 1. The results 
of the model simulations performed for 200 HCP subjects were compared with a few graph-theoretical 
metrics of the empirical connectomes reflecting the impact of the parcellations on both empirical and 
simulated data, see Ref. (Domhof et al., 2021) for more details. In this deliverable we focus on the 
impact of parcellation granularity on the empirical data (connectomes) used for the modeling and on 
the modeling results. The empirical BOLD signals and connectomes as well as simulation results of this 
study were published in three datasets on the EBRAINS platform and are ready for use by other 
researchers (Domhof, Eickhoff and Popovych, 2022a; Domhof et al., 2022b, 2022a). 
 
The results of the model validation for all brain atlases in Table 1 and the two considered whole-brain 
models of coupled phase oscillators and neural mass models are illustrated in Figure 5. For each 
combination of subject, parcellation, and model, the optimal values of the varied model parameters 
were found by maximizing the Pearson correlation between the empirical and simulated FC matrices, 
which provided the GoF values of the model illustrated in Figure 5A for both models. For varying 
parcellations we observed a high variability of the fitting results, implying that the extent of 
correspondence between simulated and empirical FC is strongly depended on the selected parcellation. 
Here, the MIST parcellation with 31 parcels, the Desikan-Killiany atlas, the von Economo-Koskinas atlas, 
and the AAL atlas yielded the highest goodness-of-fits independently of the model type (Figure 5A, atlas 
indices 1, 16, 17, and 18, respectively).  
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Figure 5. Maximized correlations (goodness-of-fit, GoF) between the empirical and simulated FC matrices for the brain 
parcellation schemes for the phase and neural mass models as indicated on the vertical axes. Dots and lines depict the 
medians and interquartile ranges across subjects, respectively. Table 1 contains the parcellation information corresponding 
to the atlas indices used in the plots, and the parcellation groups/atlases are indicated in legend. The difference between the 
plots (A) and (B) is that in plot (B) the effect of parcellation granularity (1/N, N – number of parcels) has been regressed out.  

 
We also observed that the patterns of the GoF distributions versus parcellations were similar to each 
other for different models (Figure 5A, see also Fig. 3). To quantify the mentioned similarity, we 
considered the medians of the GoF values calculated over all subjects (Figure 5A, dots) and regress them 
across parcellations between the two models of the phase oscillators and the neural mass model. This 
resulted in a regression with a coefficient of determination of 0.88 suggesting a model-independent 
impact of a given brain parcellation on the (group-averaged) GoF values. To quantify the parcellation-
induced influence on the GoF beyond the dependence on the parcellation granularity, the effect of the 
(inverted, 1/N, N – number of parcels) granularity was regressed out from the GoF values illustrated in 
Figure 5A. The residual GoF values exhibited variations across parcellations (Figure 5B) that had similar 
magnitudes as the original data, especially, between different brain atlases (parcellation algorithms), 
compare Figures 5A to 5B. In addition, the agreement between the models was further enhanced after 
regressing the parcellation granularity out, where the coefficient of determination between residual 
GoF values of different dynamical models increased up to 0.95 in Figure 5B.  
 
We investigated the effect of the parcellation granularity on the graph-theoretical measures of empirical 
connectomes (eSC, ePL, eFC) and on the GoF values of the considered phase and neural mass models 
by calculating the Pearson correlation between their medians across subjects and the level of 
granularity, i.e., the inverse of the number of parcels (1/N) included in the parcellations. The calculation 
results are shown in Figure 6. We observed high and significant correlations between parcellation 
granularity and some of the considered network properties of the structural and functional 
connectomes, see the first column in Figure 6. In particular, the modularity and the clustering coefficient 
reflecting the segregation of the empirical eSC and eFC, and also the scale parameter of the eFC degree 
distribution are highly influenced by the parcellation granularity. The structure-function relationship 
ρSC,FC = corr(eSC,eFC) is also governed by the number of regions to a large extent (high positive 
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correlation with 1/N), which is in agreement with the results of (Messe, 2019). However, most of the 
other network properties only weakly to moderately correlate with the parcellation granularity. We also 
found that the GoF values exhibited moderate and insignificant (after corrections for multiple 
comparisons) correlations with the parcellation granularity (Figure 6, table cells at the intersection of 
the first column of 1/N and the last rows for the phase and neural mass models), where the impact of 
granularity on the fitting results for the phase model is much smaller than that for the neural mass 
model.  
 

 
Figure 6.  Cross-correlations among the  level of granularity (1/N, N – number of parcels), the graph-theoretical measures of 
the empirical connectomes, i.e., network properties of the empirical eSC, ePL and eFC (see Ref. (Domhof et al., 2021) for 
more details), the structure-function relationship ρSC,FC = corr(eSC,eFC) as correlation between eSC and eFC, and the GoF 
values of the phase oscillator and the neural mass models to the empirical data as maximal correlation between sFC and eFC. 
The cross-correlation was calculated across parcellations between the median values over all subjects. Significant correlations 
are highlighted by colors (p<0.05, two-sided, Bonferroni corrected).  

 
In conclusion, even though the granularity of a parcellation can greatly influence some of the network 
statistics extracted from the empirical data, the observed parcellation-induced deviations typically go 
beyond such a simple relationship, see also Ref. (Domhof et al., 2021). The granularity influences the 
modeling results (GoF) to a limited extent, implying that the parcellation-induced variability cannot 
exclusively be explained by this quantity. Possible positive correlations between the level of granularity 
(1/N) and GoF values may indicate that the strongest correspondence between the simulated end 
empirical data can be achieved for parcellations with the coarsest granularity, i.e., small number of 
parcels. In more detail, the positive correlations across parcellations between GoF values and the 
empirical structure-function relationship (ρSC,FC = corr(eSC,eFC)) (Figures 4 and 6) together with a 
monotonic decay of the latter, see Ref. (Messe, 2019) and Figure 6, supports the above claim. These 
results seem to be model-independent and hold for the considered phase, limit-cycle and neural mass 
models for local dynamics, which generalizes the observations reported in Sec. 4.1 and study (Popovych 
et al., 2021).  
 
4.3. Reliability and subject specificity of the modeling results 
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Given the enhanced variability of the modeling results discussed in the previous sections, 
comprehensive assessments of their reliability and the subject specificity as well their relation with the 
empirical data are necessary. We therefore addressed the test-retest reliability and subject specificity 
of the results of the model validation and compare them with those of the empirical connectomes 
across a wide variety of conditions for model derivation and employed parcellation. We demonstrate 
that the results of the model fitting may be more reliable and subject specific than the empirical data 
used for model validation. However, our results also show that this finding highly depends on the 
modeling conditions and brain parcellation.  
 
The workflow of the performed investigations is schematically outlined in Sec. 3.2 (Figure 2), see also 
Ref. (Domhof, Eickhoff and Popovych, 2022b). We assessed the reliability and the subject specificity of 
the fits of the dynamical whole-brain models to the empirical FC. Here, we independently fitted 
simulated FC by optimizing free model parameters to different realizations of the empirical FC calculated 
from different acquisitions of the resting-state fMRI data of individual subjects. We therefore obtained 
a few realizations of the optimal model parameters and sFC for every subject, which allows for 
investigation of the intra-subject variability of the modeling results (Sec. 3.2).  
 
We performed our simulations for 6 different dynamical whole-brain model implementations to study 
how the distinct facets of model personalization and model complexity affect the results. The influence 
of the model personalization was studied by considering multiple versions of coupled phase oscillators 
of the Kuramoto type (Kuramoto, 1984). In particular, the model could be constructed either on the 
basis of the grand-averaged or personalized empirical SC, and could be simulated using either group-
averaged or subject-specific region-specific oscillation frequencies extracted from the empirical BOLD 
signals. Taken together, we considered the phase oscillators  

(1) using averaged empirical SCs and averaged frequencies,  
(2) using personalized empirical SCs and averaged frequencies,  
(3) using averaged empirical SCs and personalized frequencies and  
(4) using personalized empirical SCs and personalized frequencies. 

The first and the last modeling conditions define the least and the most personalized models considered, 
respectively. The influence of model complexity was studied using three different models with a similar 
extent of personalization based on individualized empirical SC and PL matrices. We employed a fully 
linear model as the least complex model, the Kuramoto model simulated with the group-averaged 
frequency profiles (case (2) above) as a moderately complex model, and a Wilson-Cowan neural mass 
model which has the most complex model description and implementation among all models wielded 
in this study.  
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Figure 7. Reliability of modeling results for varying model personalization and complexity. The distributions of the ICC values 
(Sec. 3.2) of individual functional connections, edges of the empirical (gray) and simulated functional connectomes for all the 
atlases considered in this study for (A) the phase model of the same complexity with varying model personalization and (B) 
varying model complexity for a similar level of model personalization. The extent of the model personalization is given by the 
combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC and reflected by color as indicated 
in the legend. To vary the model complexity several models were considered, where the linear model (blue), the phase 
oscillator model (green) and the neural mass model (purple) corresponds to low, moderate and a high complexity, 
respectively. Plus and minus signs at the top of the plots signify significantly increased and decreased ICC distributions for the 
respective simulated FC with respect to the one for the empirical FC, correspondingly (p < 0.05, two-sided Wilcoxon paired 
signed-rank test, Bonferroni corrected). The labels ”poor”, ”fair”, ”good” and ”excellent” correspond to those proposed by 
(Cicchetti and Sparrow, 1981). The vertical dashed black lines separate the brain atlases constructed on the basis of structural 
data (left blocks) from those based on functional data (right blocks).  

 
We first examined the reliability of the empirical and the simulated FC and calculated the ICC values 
(Sec. 3.2) of all empirical and simulated FC edges (individual functional connections between brain 
regions) and inspected their distributions. The ICCs of the empirical functional connections remained 
approximately at the same (”fair”) level across parcellations (Figure 7, gray). In contrast, the edge 
reliability of the simulated functional connectomes varied considerably across parcellations, and ranged 
from ”poor” to ”good”. These findings indicate that the reliability of the empirical FC is rather stable 
across parcellations, while that of the simulated FC is more sensitive to the utilized brain parcellations. 
We draw a specific attention to the positive influence of the model personalization on the reliability of 
the simulated connectome edges (Figure 7A): Simulating the phase oscillator model using subject-
specific frequency profiles yielded higher reliability of sFC edges than using group-averaged frequency 
profiles practically irrespective of whether the group-averaged or personalized SC was used (Figure 7A, 
green vs. red and orange). The simulated FCs of the personalized phase oscillator model clearly 
exceeded the empirical FC in terms of edge reliability for all considered structurally-derived atlases 
irrespectively of the personalization of the empirical SC, and reached the ”good” level (Figure 7A, red 
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and orange). However, when considering the phase oscillator model simulated using group-averaged 
frequencies, the simulated FCs were also fitted with higher reliability when the personalized instead of 
the group-averaged SCs were used for model construction (Figure 7A, dark vs. light green). Hence, 
model personalization appears to promote the reliability of the model fit to the empirical data. 
 
More complex models seemed to yield a reliability of the simulated FC edges that was less variant across 
parcellations, and a higher model complexity was not immediately more reliable at the same level of 
model personalization (Figure 7B, violent violins). On the other hand, the reliability of the simulated FC 
generated by the simplest linear model varied considerably across parcellations, can be higher than that 
for the non-linear models in many cases, and significantly exceeded that of the empirical FC for the 
Desikan-Killiany, von Economo-Koskinas and AAL atlases (Figure 7B, blue violins). The results of this 
investigation confirmed that an enhanced model complexity did not exert a positive influence on the 
reliability of the simulated FC, which was consistent across parcellations.  
 
Several modeling conditions yielded simulated FCs with edges’ reliability being lower than for the 
empirical FC (Figure 7). We therefore investigated whether the whole connectivity patterns of the 
simulated FCs were nevertheless similar given that they were fitted to different empirical FCs of the 
same subject. For this purpose, we evaluated the within-subject, single-modal connectome correlations 
(Figure 2). A considerable number of the modeling conditions and subjects yielded simulated FC 
matrices that had strongly diverging connectivity motifs, which is reflected by low intra-subject 
correlations between simulated FCs compared to the empirical FCs (Figure 8A-B, minus signs on top of 
the plots). In particular, increased model complexity led to more dissimilar within-subject simulated FCs 
for most parcellations (Figure 8B, violin distributions). Hence, the fit of the model to the empirical data 
could on average enhance the within-subject variability of the simulated FC as compared to empirical 
FC depending on the particular combination of model implementation and parcellation (Figure 4A-B, 
minus signs on top of the plots). Nevertheless, for most considered modeling conditions, we observed 
that the within-subject simulated FC matrices had connectivity patterns that were significantly more 
similar to one another than those of the empirical FC (Figure 8A-B, plus signs on top of the plots).  
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Figure 8.  Impact of the brain atlas, model personalization and model complexity on the reliability and subject specificity of 
the connectivity patterns of the empirical (gray) and simulated FC. (A-B) Distributions of the within-subject, single-modal 
correlations (corrs.) as a reliability measure of the empirical and simulated FC patterns for the various parcellations 
considered in this study (indicated on the horizontal axes, see Sec 3.2) and for varying levels of (A) model personalization and 
(B) model complexity.  Plus and minus signs at the top of the plots indicate significantly increased and decreased within-
subject correlation distributions for the respective simulated FC with respect to the one for the empirical FC (gray; panel B), 
respectively (p < 0.05, two-sided Wilcoxon paired signed-rank test, Bonferroni corrected). (C) Specificity indices (Sec. 3.2) 
calculated from the single-modal correlations of the empirical FC and the simulated FC for varied model personalization and 
compexity. The symbols and shaded areas mark the medians and the (Bonferroni corrected) 95% confidence intervals across 
bootstrapped specificity index estimations, respectively. The extent of model personalization as given by the combinations 
of the subject-specific or group-averaged natural frequencies (freqs.) and SC is indicated in the legend shown in the lower 
left corner of the plot. Analogously, the level of model complexity as reflected by the linear (least complex), phase oscillator 
(moderately complex) and neural mass (most complex) models with similar personalization levels is indicated in the legend 
shown in the lower right corner. The vertical dashed black lines separate the brain atlases constructed on the basis of 
structural data (left blocks) from those based on functional data (right blocks). 

 
We also calculated the specificity indices (Sec. 3.2) to determine the gain of the within- relative to the 
between-subject FC correlations. We observed that enhanced model personalization induced a clear 
increase in the specificity index that could exceed that of the empirical FC (Figure 8C). On the other 
hand, the least personalized model with the averaged frequencies and SC exhibited a very low subject 
specificity (Figure 8C, dark green) at a relatively high reliability of connectivity patterns as given by the 
intra-subject correlation of the simulated connectomes (Figure 8A, dark green). Conversely, varying the 
model complexity did not result in differences of the specificity indices that were consistent across 
parcellations (Figure 8C, blue, light green and purple). Hence, model personalization, but not model 
complexity had a positive effect on subject specificity measure (specificity index) that was consistent 
across parcellations.  
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In summary, most of the model implementations yielded within-subject correlations of the simulated 
FC that were significantly enhanced relative to the empirical FC. However, these significant 
enhancements actually reflected a general increase in both the within- and between-subject FC 
correlations such that the specificity index remained comparable with that of the empirical data. This is 
in particular true for the linear and non-linear models with a low and moderate extent of personalization 
(Figure 8). Only an enhanced model personalization can lead to much improvement of the subject 
specificity and also reliability of the simulated FC as a modeling result (Figures 7 and 8). Interestingly, 
the enhanced subject specificity of simulated FC is more pronounced for the functionally-derived brain 
parcellations (Figure 8C), while the ICC edges’ reliability and the within-subject similarity of FC patterns, 
that can also be considered as a kind of reliability, are more enhanced for the structurally-derived 
parcellations (Figures. 7A and 8A).  
 
 

5. Conclusion 
 
We evaluated the impact of brain parcellations used for the calculation of empirical structural and 
functional connectomes on the modeling results of the whole-brain dynamical models that utilized the 
empirical neuroimaging data for their derivation and validation. We in particular focused on the 
parcellation granularity (number of brain regions) and showed that it is difficult to find any particular 
optimal parcellation granularity. One may observe some optimal granularity for some individual brain 
atlases, like 200 parcels for the Schaefer atlas for the functional model fitting or intermediate region 
size for a moderate maximal probability threshold of the Harvard-Oxford atlas for the structure-
functional model fitting (Figure 3). However, the general tendency might be that a coarser granularity 
(less parcels) can lead to a better model fit to empirical data. This also agrees with the behavior of the 
empirical structure-function relationship that can well explain the variability of the GoF values across 
parcellations at the group level. The level of granularity (1/N, N – number of parcels) was found to 
positively correlate with GoF values. However, it can explain the model variability to a limited extent, 
and the inter-parcellation variability of the modeling results can go much beyond the number of regions 
in the brain parcellations. Here, the parcellation method may play a role.  
 
Given the enhanced variability of the modeling results across different brain atlases, we therefore 
performed a systematic assessments of the reliability and the subject specificity of the modeling results 
and their relation to the empirical data for a set of brain parcellations with similar granularity, but 
representing different families of brain atlases derived from functional and structural brain properties. 
We found that the atlas families (functionally-based or structurally-based) may have different impact 
on the reliability and subject specificity of the modeling results, and that the model personalization 
rather than model complexity is important for the reliability and specificity of the modeling results. The 
reported findings make our study relevant for application of personalized models, especially, given the 
current focus on the involvement of dynamical whole-brain models in clinical investigations, for 
example, in the framework of personalized medicine. Based on our results we also suggest to verify the 
obtained modeling outcomes with respect to their reliability and specificity and involve a few brain 
parcellations in the analysis to confirm the derived conclusions for different parcellations. 
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