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1. Introduction 
 
The complexity of the neuroimaging data recorded by modern magnetic resonance imaging (MRI) 
requires a sophisticated data processing  and signal extraction, which plays a crucial role for a successful 
data analysis and reliable results (Satterthwaite et al., 2013; Ciric et al., 2017; Maier-Hein et al., 2017; 
Lindquist et al., 2019; Botvinik-Nezer et al., 2020). This is a complicated and challenging problem 
especially because of the lacking ground truth for empirical data and golden standards for the 
neuroimaging data processing. A variability in the latter can cause a variability of the derived results due 
to different data processing, which led to intense debates in the literature with respect to the best-
practice approaches and parameters of the data processing delivering the most plausible results (Salimi-
Khorshidi et al., 2014; Qi et al., 2015; Parkes et al., 2018; Lindquist, 2020; Maffei et al., 2022). Selecting 
an appropriate approach and parameters for the neuroimaging data processing is also crucial for 
modeling of the resting-state brain activity by the whole-brain dynamical models investigated in the 
framework of the VirtualBrainCloud project, where the empirical data are used for the model derivation 
and validation (Ghosh et al., 2008; Honey et al., 2009; Popovych et al., 2019). Indeed, the modeling 
involves both structural (diffusion-weighted) and functional MRI data as well as brain parcellations for 
construction of the underlying model network and fitting of the model dynamics to the empirical brain 
dynamics. The modeling results appear to be sensitive to the effect of the varied data processing, 
selected parcellation and parameters of the brain tractography (Domhof et al., 2021; Jung, Eickhoff and 
Popovych, 2021; Popovych et al., 2021; Aquino et al., 2022; Domhof, Eickhoff and Popovych, 2022). It 
is therefore important to verify the modeling output and derived conclusions with respect to a variety 
of reasonable choices of data processing parameters in order to evaluate their impact, identify potential 
convergence to the common output for robust conclusions and optimize the analysis procedure. 
 
With the current deliverable we contribute to optimization of the data processing pipeline for the brain 
modeling by biophysically-motivated and data-driven dynamical models. We illustrate this on one 
example, where the modeling approach was successfully applied to classification of the clinical data by 
machine-learning approach (Jung et al., 2022). The employed pipeline was developed in the framework 
of the VirtualBrainCloud project. The initial version of it was reported in the deliverable D3.1 “Initial 
version of full-scope containerized pipeline developed” (Jung et al., 2020) that provided an 
individualized approach to the neuroimaging data processing. This is a full-scope pipeline for processing 
of the diffusion-weighted images (DWI) and the resting-state functional MRI (fMRI) human 
neuroimaging data that takes the raw MRI data as an input and delivers the whole-brain structural and 
functional connectomes necessary, in particular, for the whole-brain modeling. The pipeline has a 
modular structure, which contributes to flexibility of pipeline application appropriate for cross-platform 
usage on different hardware and software environments. In addition, the containerized scheme allows 
us to process MRI data with version-controlled software that can give consistent outcomes in different 
operating systems. It was tested for execution on single-core desktops and local clusters as well as on 
supercomputers (Jülich Supercomputing Centre, 2021), where the pipeline was optimized for parallel 
processing of several subjects on multi-thread computational nodes necessary for the handling of large 
datasets. The pipeline was developed to simplify the procedure of the high-quality and state-of-the-art 
data processing for the end user on the one hand, but also to provide enough freedom for selection of 
parameters and algorithms of the data cleaning and signal extraction on the other hand.  
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Further enhancements of the pipeline were implemented and reported in the deliverable D3.2 “Most 
appropriate RS-processing pipelines for TVB modelling finished” (Jung et al., 2021), where the focus was 
on data personalization. In particular, the updated version of the pipeline was designed to provide the 
whole-brain tractography, blood oxygen level-dependent (BOLD) signals and the respective structural 
and functional connectomes in the corresponding native spaces of individual subjects. We avoided the 
complex nonlinear transformation of the individual brains to the standard MNI152 space (Evans et al., 
2012), which can especially be grave for the brains deviating from the template brain, e.g., in the case 
of brain atrophies or injuries frequently observed in clinical data and old subjects. Brain normalization 
may also suppress the inter-individual variability that can be an important feature for differentiation 
between individual subjects in health and disease. Such a variability can be implemented in personalized 
whole-brain models, where region- and subject-specific features extracted from the empirical data are 
incorporated in the model parameters (Deco et al., 2017, 2019, 2021; Demirtas et al., 2019; Wang et 
al., 2019; Domhof et al., 2021; Jung, Eickhoff and Popovych, 2021; Popovych et al., 2021; Domhof, 
Eickhoff and Popovych, 2022). Personalized models can demonstrate better fit to empirical data, test-
retest reliability and subject specificity and can be applied for modeling clinical data and treatments in 
the framework of personalized medicine (Falcon, Jirsa and Solodkin, 2016; Jirsa et al., 2017, 2023; Deco 
et al., 2021; Domhof, Eickhoff and Popovych, 2022). The developed pipeline may contribute to this topic 
by enhancing the model personalization already at the level of empirical data used for the model 
derivation and validation. 
 
The structure of the developed pipeline is schematically illustrated in Fig. 1, see also the deliverables 
(Jung et al., 2020, 2021) for more details. In the current deliverable we demonstrate how the 
personalized pipeline can be applied to processes the clinical neuroimaging data of Parkinson’s disease 
that can be used for biophysical modeling and prediction based on machine learning. We vary the 
respective pipeline parameters and optimize them in order to appropriately prepare the processed 
empirical data for the modeling of the inter-individual variability in the clinical data. We in particular 
show that complementing the empirical connectomes by simulated ones obtained for the optimal 
pipeline parameters and the best neuroimaging and behavioral model fits can significantly improve the 
differentiation of the patients from healthy controls. Our results suggest that the personalized whole-
brain models based on personalized data can serve as an additional source of information relevant for 
diagnosis of diseases and possibly for their treatment as well. 
 
 

2. Partners involved 
 
This deliverable was prepared by the Institute of Neuroscience and Medicine (Brain and Behaviour, INM-
7) from the Forschungszentrum Jülich (FZJ). The computational resources were granted through JARA 
on the supercomputer JURECA (Jülich Supercomputing Centre, 2021) at Jülich Supercomputing Centre, 
Forschungszentrum Jülich. 
 
 

3. Description of work performed 
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Figure 1: Schematic illustration of the pipeline workflow for personalized data processing and signal extraction. The 
independent modules are encircled in enumerated rectangular blocks with performed data processing steps indicated, where 
the operations shadowed in color are used to process T1w images (gray), dwMRI data (light blue) and fMRI data (green). The 
parts of the pipelines necessary for parcellations in the native spaces are indicated in yellow. The arrows depict the 
interdependence (required input) between the modules.  
 
In this study, three whole-brain connectivities were calculated for 116 subjects consisting of 51 (30 
males) healthy controls (HC) and 65 (45 males) patients diagnosed with Parkinson’s disease (PD): 
empirical functional connectivity (eFC), empirical structural connectivity (SC), and simulated functional 
connectivity (sFC). Figure 2 schematically illustrates the data processing and simulation workflow. Four 
temporal filtering conditions were applied to empirical and simulated BOLD signals. Subsequently, we 
considered three types of connectivity relationships: correlation of eFC vs. SC, correlation of SC vs. sFC, 
and correlation of eFC vs. sFC. The relationships involving sFC vary depending on the two free 
parameters of global coupling and global delay of the computational model as illustrated by the eFC-
sFC correlation landscape in the parameter space in Fig. 2 (the rightmost color plot). Such a landscape 
was used for the model validation, where the model parameters of the best fit (strongest similarity) 
between empirical and simulated data were considered as optimal. 
 
Structural and functional MRI data were acquired using a 3T scanner (Siemens Trio). A structural brain 
image was acquired using a three-dimensional T1-weighted (T1w) sequence of the voxel dimension 240 
× 256 × 160 with voxel size  1.0 × 1.0 × 1.1 mm3. Diffusion-weighted images (DWI) comprised a single 
non-weighted (B0) image and weighted (B = 1000 s/mm2) images with 64 directions and voxel 
dimension  90 × 90 × 55 with voxel size  2.4 × 2.4 × 2.4 mm3. Resting-state fMRI was obtained using an 
echo-planar imaging sequence during 663s with TR = 2.21 s, voxel dimension  64 × 64 × 36 with voxel 
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size  3.125 × 3.125 × 3.565 mm3, see (Jung et al., 2022) for more details. We performed quality control 
for all acquired MRI data, where the data of 73 subjects have been found to have no artifacts or 
abnormal brain shape. For the other 43 subjects included in the study, DWI volumes with artifacts were 
culled such that 3.9 impaired volumes were removed on average in the screened subjects, and 60.1 
weighted volumes were on average kept for further analyses (Fig. 3). The maximal number of the 
removed volumes was 16 for one subject with 48 weighted images of good quality, and we therefore 
included all 116 subjects in the subsequent analyses after the data quality check and artifact cleaning. 
 

 
 
Figure 2: Data processing and simulation overview. First (upper box), brain parcellations in the native space of T1w were 
prepared and applied to the processed fMRI data, BOLD signals were extracted from the corresponding regions and filtered 
according to four temporal filtering conditions (see the right bottom box), and four empirical functional connectivities (eFC) 
were calculated. Second (middle box), the parcellations were also used for calculation of the structural connectivity by 
extracting streamlines from the whole-brain tractography reconstructed using diffusion-weighted images, where the number 
and length of streamlines connecting any two brain regions were collected into matrices of streamline count (SC) and the 
averaged path-length (PL). Third (lower box), the structural connectome (SC and PL) was used to build a brain network for the 
whole-brain modeling that simulates BOLD signals, which were filtered according to the considered filtering conditions (right 
bottom box) and used to calculate simulated FC (sFC). Subsequently, we calculated connectivity relationships (Pearson 
correlation) using those three connectivity matrices: (1) corr(eFC, SC), (2) corr(sFC, SC), and (3) corr(eFC, sFC). Model 
parameters of global coupling and global delay were varied to validate the model against empirical data. In particular, the 
correspondence (correlation) between empirical and simulated functional connectivities was calculated for each parameter 
point resulting in the parameter space landscape of relationship between eFC and sFC (rightmost color plot). The most 
pronounced correspondence (correlation) between eFC and sFC was selected together with the respective optimal model 
parameters as a result of neuroimaging model fitting for further analysis. 
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Figure 3: Culled volumes in diffusion-weighted images (DWI) after quality check. 
 
For the personalized data processing, we used a containerized pipeline developed in the framework of 
the VirtualBrainCloud to process the structural and functional MRI in the corresponding native spaces 
(Jung et al., 2020, 2021). The pipeline consists of five modules: preprocessing of structural MRI (T1w 
and DWI), whole-brain tractography (WBT) calculation, atlas transformation, reconstruction of 
structural connectivity (SC and PL), and preprocessing of fMRI (Fig. 1). The pipeline comprises Freesurfer 
(Dale, Fischl and Sereno, 1999), FSL (Smith et al., 2004), ANTs (Tustison et al., 2014), MRtrix3 (Tournier 
et al., 2019), and AFNI (Cox, 1996). It is publicly available (https://jugit.fz-juelich.de/inm7/public/vbc-
mri-pipeline). 
 
3.1. Preprocessing of the structural MRI data 
 
The preprocessing module of structural MRI performed the following steps: bias-field correction for 
T1w, alignment of anterior-posterior commissures (AC-PC) of T1w, recon-all by Freesurfer, removing 
the Gibbs ringing artifacts of DWIs, bias-field correction for DWIs, corrections of head motion, b-vector 
rotations and eddy distortion of DWIs, and co-registration between averaged DWI and T1w. This module 
segmented subcortical areas based on voxel intensities of the T1w images. It also prepared labeling 
annotations using a brain atlas for which a classifier was available. The latter can also be created from a 
training set by capturing region data either drawn by neuroanatomists or according to dedicated 
algorithms (Fischl et al., 2004; Jung et al., 2021). The WBT calculation module included only MRtrix3 
functions. Fiber oriented distributions (FOD) were estimated from the DWIs using spherical 
deconvolution, and the WBT with 10 million total streamlines was created through the fiber tracking by 
the second-order integration over the FOD by a probabilistic algorithm (Tournier, Calamante and 
Connelly, 2010). The atlas transformation module annotated labels using a classifier to parcel cortical 
regions in the native T1w space by Freesurfer. In the present study, we applied two atlas classifiers for 
brain parcellations, the Schaefer atlas with 100 parcels (Schaefer et al., 2018) and the Desikan-Killiany 
atlas with 68 parcels (Desikan et al., 2006). The former is based on fMRI data, and the latter is labeled 
by gyral-based anatomical parcellation. Both atlases provide cortical parcellations, and additional 14 
subcortical areas segmented by the preprocessing module were included and combined with the 



© VirtualBrainCloud | public report  

                                  8 of 20 

labeled cortical parcels. The pipeline transformed the labeled image (cortical parcels and subcortical 
regions) from the T1w to DWI native spaces. Finally, the reconstruction module calculated the matrices 
of the streamline counts (SC) and the matrices of the average path lengths (PL) of the streamlines 
extracted between any two parcellated brain regions from the calculated WBT with the transformed 
labeled image in the native DWI space. 
 
3.2. Preprocessing of the functional MRI data 
 
The preprocessing module of the resting-state fMRI data performed slice time correction, head motion 
correction, re-slicing in a 2 mm iso-cubic voxel space, intensity normalization, de-trending with filtering 
very slow fluctuation out (high pass), co-registration to the T1w image, and calculation of regressors for 
the white-matter, cerebrospinal fluid (CSF), and brain global signals as well as for the head motion. The 
pipeline also transformed the labeled image of the brain parcellation generated in the native T1w space 
to the fMRI native space. Finally, we performed a nuisance regression with the prepared regressors 
(white-matter, CSF, and the brain global signals as well as head motions). After preprocessing of MRI, 
we extracted BOLD signals based on the annotated atlas labels and applied three temporal band-pass 
filtering conditions in the frequency ranges [0.01,0.1] Hz (broad band; BF), [0.01,0.05] Hz (low-frequency 
band; LF), and [0.05,0.1] Hz (high-frequency band; HF). Therefore, four filtering conditions were 
considered: no filtering (NF), BF, LF, and HF. The filtering was made by a script in the Python 
programming language (version 3.8, Python Software Foundation, https://www.python.org/) using the 
SciPy (version 1.5) signal processing module and NumPy (version 1.19) for the temporal band-pass 
filtering. We used the Butterworth digital filter of the order 6, scipy.signal.butter. 
 
3.3. Model simulations 
 
The whole-brain resting-state dynamics was simulated by a system of coupled neuronal models 
representing the mean activity of the brain regions. Each region contains two populations of excitatory 
and inhibitory neurons that interact with each other via post-synaptic potentials (PSP) (Lopes da Silva et 
al., 1974). The considered convolution-based model was of the Jansen-Rit type (Jansen and Rit, 1995; 
Moran, Pinotsis and Friston, 2013) and simulated the PSP signals involving other brain regions 
interacting with time delay in coupling according to the calculated structural connectivity, i.e., SC and 
PL matrices, see Ref.  (Jung et al., 2022) for details. We considered two model fitting approaches that 
we refer to as neuroimaging and behavioral model fitting. The former fitting is well known from the 
literature and consists in validation of the model against neuroimaging empirical data. In this study, the 
Pearson correlation between eFC and sFC (upper triangle parts) was calculated and referred to as 
goodness-of-fit (GoF) values (Honey et al., 2009; Deco et al., 2017). We also considered the connectivity 
relationship between empricial SC (eSC) and sFC. 
 
For the behavioral model fitting we calculated the effect size of the difference between the 
neuroimaging GoF values of the HC and PD subject groups for each model parameter point in the 
considered parameter space. We thus obtained the parameter landscape reflected the relation of the 
model to the behavioral data, which can thus be used for behavioral model fitting. The landscape of the 
effect size was verified with respect to statistical significance followed by correction for multiple 
comparisons, which resulted in a thresholded Z-score map for significant parameter areas (alpha < .05). 
Finally, we searched for the optimal model parameters in the significant areas corresponding to the 
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maximal effect size, i.e., maximal differences between HC and PD in the GoF value. We also considered 
two connectivity relationships (eFC vs. sFC and eSC vs. sFC) for the behavioral model fitting. 
 
3.4. Cross-validation of prediction model 
 
We used a regularized logistic regression with the least absolute shrinkage and selection operator 
(LASSO) for training and classification of the healthy and PD subjects (Tibshirani, 1996). To avoid an 
overfit, the training error included the deviance and an L1-penalty (Hastie, Tibshirani and Friedman, 
2009). We used a cross-validation (CV) to train and test the regularized logistic regression, see (Jung et 
al., 2022) for details. Since PD is a degenerative disease, the features for PD classification should be 
controlled by an age effect via confound regression. Due to a random sampling from the same cohort, 
we should prevent data leakage during the machine learning CV procedure, because the trained models 
can be biased throughout the confound regression and neuroimaging and behavioral fitting of the 
computational model. With this respect, we applied a cross-validated confound regression (More et al., 
2023) as well as a cross-validated fitting of the computational model to empirical data in order to 
prevent a data leakage during model training and remove the age effect from the trained model.  
 
 

 
 
Figure 4: Schematic illustration of the nested cross-validation (CV) utilized in this study. The green boxes in the leftmost plot 
illustrate randomly split subject subgroups used for training of the model in the 5-fold outer loop and in the 10-fold inner loop. 
The orange box in the outer loop depicts the testing subject subgroup used for evaluation of the prediction performance of 
the trained model as given by accuracy, sensitivity, specificity and area under ROC curve. Abbreviations P: positive as patients, 
N: negative as controls, TP: true positive, FP: false positive, TN: true negative, FN: false negative, LASSO: least absolute 
shrinkage and selection operator, ROC: receiver operating characteristic, and AUC: area-under-curve. 
 
We used a nested CV to train a regularized logistic regression for PD classification. Figure 4 illustrates 
the training and test processes via the nested CV. In an outer loop, we randomly split the subjects into 
five subsets with the same ratio of HC and PD within each subset around 0.8 (51:65 in the entire cohort). 
One subset of 20% of subjects was considered as a test set (unseen subjects, the orange box in the outer 
loop in Fig. 4), and the others (four subsets pulled together, the green boxes in the outer loop in Fig. 4) 
composed a training set. Then, the selected training set from the outer loop was split into ten subsets 
for the nested CV in the inner loop. The training process estimated the parameters of the logistic 
regression, i.e., the parameter of the L1-penalty which gives the minimal training error during the 10-
fold repetitions. After that, the trained model was applied to predict the classes in the test set of the 
outer loop. We calculated a confusion matrix and plotted a receiver operating characteristic (ROC) curve 
(Fawcett, 2006) based on the prediction by shifting a hit criterion of a predicted probability from 0 to 1. 
Subsequently, we calculated the prediction accuracy and the area-under-curve (AUC) of the ROC curve. 
In the next step, we set one of the four training subsets in the outer loop as a test set and composed 
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the training set from the remaining subjects for the next iteration of the inner loop. Then we performed 
the nested CV (inner loop) again. Therefore, from one 5-fold random splitting of the subjects in the 
outer loop, five prediction results were obtained. We repeated this procedure 50 times leading to 5 × 
50 = 250 prediction results. 
 

4. Results 
 
We performed the whole-brain simulations using the whole-brain dynamical model derived from and 
validated against MRI data from 116 subjects consisting of 51 HCs and 65 PD patients. We calculated 
sFC depending on the varied model parameters, brain parcellations and the filtering of the empirical 
and simulated BOLD signals in different frequency bands. The model was then validated based on the 
GoF values that were calculated as similarity (Pearson correlation) between the empirical and simulated 
connectomes and maximized by varying model parameters in the considered parameter space. As 
mentioned above, such a model validation was referred to as neuroimaging model fitting. Furthermore, 
we split subjects into HC and PD groups, compared the neuroimaging GoF values between the groups 
and found the optimal model parameters, where the difference between HC and PD subjects is maximal, 
i.e., the largest effect size of the difference, which was referred to as behavioral model fitting. 
Subsequently, we performed PD classification by using the connectivity relationships regarding the 
modality of model validation, i.e., neuroimaging and behavioral model fittings. Below we show that the 
differences between HC and PD subjects can be enhanced for the simulated connectomes as compared 
to empirical ones, and the performance of PD prediction by machine-learning approach can be 
improved when the empirical connectivity is complemented by simulation results. 
 
4.1. Neuroimaging and behavioral model fitting  
 
We calculated sFC using simulated BOLD signals for each parameter point on a dense grid of the 2-Dim 
model parameter space of the global delay and global coupling and obtained the  GoF values (similarity, 
Pearson correlation) between eFC and sFC. Figure 5 shows the corresponding values in the parameter 
space averaged over all subjects, which define an average GoF parameter landscape. We calculated eFC 
and sFC for the frequency ranges of the corresponding BOLD signals provided by the employed temporal 
filtering, i.e., NF, BF, LF, and HF conditions (see Sec. 3.2 for details). This resulted in the GoF landscapes 
obtained for the corresponding filtering conditions (Fig. 5 A1 and B1). The profiles of the parameter 
landscapes were different between the considered brain atlases. The case of the Schaefer atlas showed 
the hill around maximal GoF values (the dashed circle in Fig. 3 A1), and the distributions of the optimal 
global delays for the maximal GoF were mainly in the biologically feasible range, from 0.06 to 0.25 s/m 
(Caminiti et al., 2013), where we used the actual PL values in millimeters for the signal propagation in 
the model (Fig. 5 A4). On the other hand, the maximal GoF values for the Desikan-Killiany atlas exhibit 
a bi-modal distribution (the dashed circles in Fig. 5 B1) that are well separated along the parameter of 
global coupling (Fig. 5 B3). Moreover, stronger global coupling of the maximal GoF values is 
accompanied by a wide spread along with global delays (the upper dashed circle in Fig. 5 B1), and these 
optimal global delays may get out of the biologically feasible range as compared to the weaker global 
couplings (the lower dashed circle in Fig. 5 B1). We also note here that the strongest similarity between 
the simulated and empirical data appears to be observed for the non-filtered BOLD signals (NF) for both 
considered brain parcellations, where the relatively narrower frequency bands (LF and HF) resulted in 
significantly lower maximal GoF values than the cases of the broad (BF) or the entire frequency (NF) 
range of the resting-state BOLD signals. 
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Figure 5: Results of the neuroimaging model fitting for (A) the Schaefer atlas and (B) the Desikan-Killiany atlas. (A1, B1) 
Parameter landscapes of the similarity (Pearson correlation) between empirical FC and simulated FC, i.e., goodness-of-fit (GoF) 
values averaged over the entire subject cohort. The landscapes are illustrated for each filtering condition (NF, BF, LF and HF, 
see Sec. 3.2 for details) indicated in the plots. The dashed circles delineate the hills around the maximal GoF values. 
Distributions of (A2, B2) the maximal GoF values, (A3, B3) optimal coupling parameters and (A4, B4) the respective optimal 
delays corresponding to the maximal GoF values for each filtering condition. The dashed horizontal lines in plots (A4, B4) 
indicate the biologically feasible delay range regarding the electrophysiological conduction speed (Caminiti et al., 2013). The 
middle lines in interquartile box plots indicate medians of distributions, and the red pluses are the outliers. 
 
 

 
 
Figure 6: Behavioral model fitting based on a diagnostic criterion, i.e., on the differences between the HC and PD subjects for 
(A) the Schaefer atlas and (B) the Desikan-Killiany atlas. (A1, B1) Statistical maps of thresholded Z-scores for HC < PD relation 
between the neuroimaging GoF values in the model parameter plane of the global delay and global coupling obtained by the 
non-parametric Wilcoxon rank-sum one-tail test and corrected for multiple comparisons using random-field thresholding for 
cluster correction. The results are illustrated for NF condition. (A2, B2) Maps of the corresponding effect size between the 
groups. The maximal values are indicated by yellow circles. (A3, B3) Tables of the optimal parameters corresponding to the 
maximal effect size in the biologically feasible delay ranges from 0.06 to 0.25 s/m (Caminiti et al., 2013) for each temporal 
filtering condition. 
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For the behavioral model fitting, we considered the individual GoF values obtained during the 
neuroimaging model fitting (Fig. 5) and compared their distributions for the groups of HC and PD 
subjects for each parameter point in the model parameter plane of global delay and global coupling. 
This resulted in a statistical map of p-values of the Wilcoxon rank-sum one-tail (HC < PD) test in the 
model parameter space. We then corrected the p-values with respect to multiple comparison and 
applied the random-field thresholding (Worsley et al., 1992) using a 2-dimensional Gaussian kernel with 
a 3-point full-width-half-maximum, i.e., by controlling the family-wise error by cluster correction. In the 
thresholded map (Z > 4.097 for alpha = .05), we observed a prominent disassociation between HC and 
PD groups in large parameter regions, where the neuroimaging GoF values of HC subjects are 
significantly smaller than those for the PD patients (Fig. 6 A1 and B1). 
 
We also calculated the effect size between the GoF values of the HC and PD groups (Fig. 6 A2 and B2 for 
NF condition). The parameter maps of the effect size showed similar patterns with the thresholded 
statistical maps (Fig. 6 A1 and B1). Subsequently, for the parameter points of statistically significant GoF 
differences between HC and PD (Fig. 6 A1 and B1), we searched for the optimal parameter points 
corresponding to the maximal effect size (HC < PD, the yellow circles in Fig. 6 A2 and B2) for each filtering 
condition. These optimal model parameters and the corresponding effect size are considered as the 
results of the behavioral model fitting. Furthermore, we also performed bootstrapping analysis to see 
how stable the optimal parameters are when the subjects are randomly sampled. We found that the 
optimal parameter points for the maximal effect size were narrowly distributed across different subject 
samplings and filtering conditions (Fig. 7), which indicates their stability and robustness when the 
subject group configurations were varied. Interestingly, the optimal parameters for the maximal effect 
size were in the biologically plausible range of the model parameters (delay). Therefore, we selected 
these optimal parameter points in the biologically plausible range of the delay for the behavioral model 
fitting among a few local optima observed in the thresholded map (Figure 6 A3 and B3). 
 

 
 
Figure 7: Results of the bootstrapping analysis (n=1000) for the optimal model parameters of the behavioral model 
fitting for (A) the Schaefer atlas and (B) the Desikan-Killiany atlas. The obtained distributions of the optimal model 
parameters are depicted in the model parameter plane and in the projections to the parameter subspaces, which 
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correspond to the maximal effect size of the difference between neuroimaging GoF values of the bootstrapped 
HC and PD subject groups. 
 
4.2. Differentiation between HC and PD subjects 
 
In this study we investigated three types of connectome relationships as mentioned in Fig. 2: eFC vs. 
eSC, eFC vs. sFC and eSC vs. sFC, to evaluate the group differences between HC and PD subjects. The 
empirical structure-functional relationship (eFC vs. eSC) has a single value per subject for each filtering 
condition and parcellation. Due to the varied model parameters of global delay and coupling, the other 
two connectome relationships attain as many values as the considered number of simulated parameter 
points of the model. For the two approaches of the model validation based on the neuroimaging and 
behavioral model fittings, the optimal model parameters and the corresponding sFC matrices were 
calculated based on the best model fit to neuroimaging or behavioral data, respectively. This approach 
is illustrated in Figs. 5-7 for the relation between simulated and empirical functional connectomes, eFC 
vs. sFC. The neuroimaging model fitting resulted in different optimal parameter points for different 
subjects corresponding to the different maximal GoF values in the parameter spaces of individual 
subjects (Fig.5 A2-A4, B2-B4). The behavioral fitting approach led to one optimal parameter point for 
the entire subject cohort and every filtering and parcellation condition, which corresponded to the 
maximal effect size of the difference of the neuroimaging GoF values between HC and PD subject groups 
(Fig. 6 A2-A3, B2-B3, and Fig. 7).  
 
Similar procedure can be applied to the model fitting based on the structure-functional relationship 
between empirical SC and simulated FC, i.e., eSC vs. sFC, see Ref. (Jung et al., 2022) for details. 
Accordingly, for every subject, filtering condition and brain parcellation, we calculated five optimal 
connectome relationships (Pearson correlation) for optimal model parameters obtained for the two 
model fitting approaches, which are corr(eFC, eSC) (empirical), corr(eFC, sFC) (neuroimaging), corr(eSC, 
sFC) (neuroimaging), corr(eFC, sFC) (behavioral), and corr(eSC, sFC) (behavioral). We used these five 
connectome relationships to evaluate how strongly they are differentiable between HC and PD. The 
empirical structure-function relationships corr(eFC, eSC) of HC and PD subjects were found to be from 
distributions with different medians (Fig. 8 A1 and B1). The case of the Schaefer atlas showed 
significantly different distributions between the groups for all filtering conditions (Fig. 8C, left, the first 
row). Here, HC subjects had a weaker correspondence between the brain structure and function. On 
the other hand, for the Desikan-Killiany atlas the differences in the distributions were significant for the 
LF filtering condition only (Fig. 8C, right, the first row). 
 
The differentiation between PD and HC subject groups can be done based on the modeling results, 
where the optimal sFC is taken into account in the connectome relationships. The group differences 
obtained by involving sFC from the neuroimaging model fitting were small and non-significant for both 
atlases and all filtering conditions (Fig. 8, A2-A3, B2-B3, and C, the second and third rows). On the other 
hand, we observed significantly stronger agreements between the empirical and simulated 
connectomes for PD patients than HC subjects, when the optimal sFC from the behavioral model fitting 
was involved (Fig. 5, A4-A5, B4-B5 and C, the fourth and fifth rows). This holds for all considered 
parcellations, filtering conditions and functional and structure-functional connectome relationships. 
Therefore, involving the simulated connectomes in the analyses results in a stable differentiation 
between HC and PD, which is little influenced by the temporal filtering and parcellation scheme in 
contrast to the purely empirical data. 
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Figure 8: Differences between HC and PD subjects as reflected by the connectome relationships. (A, B) Box plots of five 
correspondences of the HC (blue) and PD (red) groups for (A) the Schaefer atlas and (B) the Desikan-Killiany atlas and for (1) 
the empirical structure-functional relationship corr(eFC, eSC), (2, 3) functional and structure-functional relationships for the 
simulated connectomes corr(eFC, sFC) and corr(eSC, sFC) for the neuroimaging model fitting, and (4, 5) connectome 
relationships corr(eFC, sFC) and corr(eSC,. sFC) for the behavioral model fitting. (C) Effect sizes between HC and PD subjects 
reflected by the empirical and simulated connectome relationships regarding both model fitting modalities. Summary tables 
of the effect sizes (blue for HC >PD and red for HC < PD) with indicated Bonferroni corrected p-values (yellow rectangles) of 
the Wilcoxon rank-sum two-tail test for (left) the Schaefer atlas and (right) the Desikan-Killiany atlas. 
 
4.3. Classification of PD by machine learning 
 
We employed the five whole-brain connectivity relationships for PD classification as the features of the 
machine-learning techniques, i.e., predictors in the logistic LASSO regression in our case. Three feature 
conditions were prepared by combining the ten features consisting of five connectome relationships 
mentioned above for two atlases: (i) empirical features, (ii) simulated features, and (iii) all features. 
Here, all ten features were included in the classification analysis, but some of them were randomly 
shuffled in accordance to the selected feature condition. The shuffling was performed by a random 
redistribution of the values of a given feature (connectome relationship) among subjects such that the 
correspondence of the feature to individual subjects (and to their behavioral characteristics, e.g., PD or 
HC) was destroyed. By focusing on some feature combination like conditions (i)-(iii) from above or brain 
parcellations, the other features were shuffled. For example, to focus on the empirical features for the 
Schaefer atlas, four simulated features (eFC vs. sFC and eSC vs. sFC for two model fitting modalities) of 
the Schaefer atlas and all five features (one empirical and four simulated features) of the Desikan–
Killiany atlas were shuffled. For a given feature condition, the prediction model was trained according 
to the nested CV and applied to the unseen test subjects (Fig. 4). We then calculated a confusion matrix 
from the prediction results, plotted a ROC curve and evaluated the prediction performance (accuracy, 
sensitivity, specificity and balanced accuracy) and the area under a curve (AUC) of the ROC curve (Fig. 
4).  
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Figure 9 shows the prediction performance of the trained models for each of the investigated 
conditional cases of brain parcellations, frequency bands of temporal filtering and feature conditions. 
The first important observation is that an involvement of the simulated connectomes can affect the 
classification of PD and HC, see Fig. 9 and compare blue bars (empirical features) to red bars (simulated 
features) and to yellow bars (all features). In particular, the prediction performance can be enhanced 
by complementing the empirical data by the simulated connectomes when comparing with the case of 
purely empirical features. Interestingly, the classification performance can further be improved if the 
features from both atlases were merged.  
 
We can also address how the prediction performance varies depending on the filtering conditions (Fig. 
9D). The effect of the temporal filtering was prominent for the empirical features for the Schaefer atlas, 
where the performance was significantly increased for the LF condition compared to the others (Fig. 
9D, the Emp. column for the Schaefer atlas). On the other hand, the HF condition showed low 
performances, especially, for the specificity of the empirical features (Fig. 9B and D), where the LF 
filtering again seems to be a beneficial condition for PD prediction.  
 
Summarizing, the temporal filtering conditions influenced the model performance, and the LF bandpass 
filtering resulted in the most effective PD prediction relying on the empirical and simulated connectome 
relationships. In other words, complementing empirical data with simulation results using LF filtering 
and involving multiparcellation (concatenating both atlases) is advisable for PD classification. 
 

 
 
Figure 9: Summary of the performance of PD classification using the three different feature conditions: empirical features 
(blue bars), simulated features (red bars), and all features (yellow bars) after incorporating the cross-validated age controlling 
and the behavioral model fitting (Fig. 4). Median values of the balanced accuracy, specificity and area-under-curve (AUC) of 
the receiver operating characteristics (ROC) curves for all considered parcellations and filtering conditions are shown in each 
panel for (A) balanced accuracy and (B) specificity and (C) AUC. The error bars indicate the interquartile range across iterations 
of the outer loop of the nested cross-validation procedure (Fig. 4). The black lines connecting two conditions indicate 
significantly different performance between feature conditions. (D) Effect sizes between filtering conditions for each feature 
condition. The signs ‘<’ and ‘>’ indicate which condition is significantly larger than the other. For example, ‘<’ sign for ‘NF-LF’ 
indicated on the vertical axes means NF < LF in the prediction performance for a given feature condition indicated on the 
horizontal axes. The Wilcoxon signed-rank two-tail test was used for comparisons across predictor sets and filtering conditions 
(Bonferroni corrected statistics).  
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5. Conclusion, next steps 
 
We developed a pipeline that can be used for pre-processing of the neuroimaging MRI data in the native 
spaces of the brain images without involving a complex nonlinear transformation to the standard 
MNI152 space. This is supposed to reduce the complex manipulation with the data, make it applicable 
to processing of difficult clinical data and facilitate the investigation of the inter-individual variability. 
We applied this pipeline for processing of the clinical MRI data of PD patients used for the derivation 
and validation of the whole-brain dynamical model in particular. We showed that the obtained empirical 
and simulated data (structural and functional connectomes) can successfully be employed for 
differentiation (classification) of the patients from healthy subjects, where the performance can be 
improved when the empirical connectomes are complemented by simulation results. We also 
demonstrated that selected parameters of the data processing like temporal filtering or brain 
parcellation can strongly influence the obtained results, e.g., the prediction performance. It is therefore 
important to test the drawn conclusions for varying data processing conditions, and the developed 
pipeline is an appropriate toll for this and provides enough freedom for such investigations.  
 
The pipeline was also used to calculate the empirical BOLD signals, eSC and eFC for a sample of subjects 
from the 1000BRAINS cohort (Caspers et al., 2014), which we made available for neuroimaging and 
modeling communities via EBRAINS platform (Jung, Eickhoff and Popovych, 2022). 
 
The pipeline is available in a dedicated project on GitHub:  
  https://jugit.fz-juelich.de/inm7/public/vbc-mri-pipeline.  
 
The repository contains all code and documentation necessary to apply the pipeline to the pre-
processing of the neuroimaging data and extraction of the signals including the whole-brain 
tractography, SC, BOLD signals and FC. 
 
The next steps may include a systematic evaluation of the impact of personalized data processing and 
the extent of model personalization on the investigation of inter-individual variability and prediction 
performance of behavioral characteristics of individual subjects from the neuroimaging empirical and 
simulated data in health and disease. 
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