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Summary 

Integrating electrophysiological data to TVB computational models is a key milestone in achieving 
the overarching goal of The VirtualBrainCloud (TVB-Cloud), that is, personalized prevention and 
treatment of dementia. In this context, we extracted individual dynamic measures including local 
dynamics (long-range temporal correlation (LRTC), functional excitation-inhibition ratio (fE/I)), and 
inter-areal dynamics (functional connectomes of phase (i.e., phase locking value (PLV), corrected 
imaginary phase-locking value (ciPLV), weighted-phase lag index (wPLI)) from the MEG dataset of the 
Madrid cohort. We show that both local and inter-areal dynamics progressively change and their 
spectral profiles reliably dissociate NC, SCD, and MCI individuals and are critical for computational 
model fitting and validation. The description of workflow, computation of dynamic measures, their 
importance in characterizing early stages of Alzheimer’s disease, and their integration with the 
computational models are described in this document for public use. 
 

2. Partners involved 

UNIVERSITY OF HELSINKI (UH) 
UNIVERSIDAD COMPLUTENSE DE MADRID (UCM) 
 

3.  Description of the work performed 

3.1  MEG database 

The MEG full-cohort database was introduced in The Virtual Brain Cloud (TVB-Cloud) public 
Deliverable 3.51. This shared database included MEG data from older adults classified into four 
diagnostic categories: healthy control (HC), subjective cognitive decline (SCD), mild cognitive 
impairment (MCI), and Alzheimer’s disease (AD). This shared database included a cross-sectional 
dataset of 364 participants, as well as a longitudinal dataset of 40 participants who were followed-
up every six months to investigate AD conversion (Pusil et al., 2018). Besides MEG, MRI, clinical, 
neuropsychological, and genetic data were also provided. All participants were right-handed, native 
Spanish speakers, aged 65 to 80. Data collection was carried out after obtaining written consent from 
each participant. Beforehand, they were provided with all the necessary information to ensure that 
the collection and processing of personal data was conducted in a fair, lawful, and transparent 
manner (see also the Annex to Deliverable 3.5). In the context of the TVB-Cloud project, the MEG 
data was processed at the Complutense University of Madrid (UCM) and at the University of Helsinki 
(UH) according to the workflows described in Section − Workflows. In the public Deliverable 3.72, the 
database was completed with additional individual dynamic measures, including local dynamics (i.e., 
long-range temporal correlations (LRTCs) and functional excitation-inhibition (fE/I)) and inter-areal 
dynamics (i.e., functional phase-connectomes, amplitude coupling, cross-frequency synchrony (CFS), 

 
1 https://virtualbraincloud-2020.eu/files/tvb/documents/public%20deliverables/period%202/TVB-Cloud_Del3.5.pdf 
2 https://virtualbraincloud-2020.eu/files/tvb/documents/public%20deliverables/period%202/TVB-Cloud_D3.7_cohort 
.pdf 
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and phase-amplitude coupling (PAC)). The primary goal of this analysis array was to equip the 
consortium with robust tools to support personalized The Virtual Brain (TVB) parameter validation, 
while concurrently generating diagnostic and prognostic biomarkers for AD (see Section – Results). 

Table 1. Summary description for the shared MEG dataset. 

 HC SCD MCI AD 

N 119 88 142 15 

Sex (F) 79 70 93 7 

Age (years) 70.29 ± 4.38 72.34 ± 5.21 73.40 ± 5.44 76.73 ± 5.20 

MEG 119 88 142 15 

T1-MRI 119 88 142 15 

dw-MRI 107 80 122 11 

 

 

3.1.1 Sample 

The shared database includes 119 HC (79 females; 70.29 ± 4.38 years), 88 participants with SCD (70 
females; 72.34 ± 5.21 years), 142 participants with MCI (93 females; 73.40 ± 5.44 years), and 15 
participants with AD (7 females; 76.73 ± 5.20 years). Following the recommendations made by the 
SCD Initiative Working Group, the participants eligible for the SCD group: (1) reported self-
experienced persistent cognitive concerns (mainly associated with memory) in an interview with an 
expert clinician; (2) performed within the normal range on standardized cognitive tests that 
discriminate MCI and prodromal AD; (3) felt that their cognitive decline affected their daily activities; 
(4) had requested medical consultation; and (5) were ≥ 60 years at the onset of SCD, having it 
occurred within the last five years. MCI diagnosis was established following the recommendations of 
the National Institute on Aging−Alzheimer’s Association (NIA−AA) criteria: (1) self- or informant-
reported cognitive complaints; (2) objective evidence of impairment in one or more cognitive 
domains; (3) preserved independence in functional abilities; and (4) not demented. All participants 
classified as having AD fulfilled the National Institute of Neurological and Communicative Disorders 
and Stroke−Alzheimer’s Disease and Related Disorders Association (NINCDS−ADRDA) criteria for 
probable AD. This requires patients to meet the clinical criteria for all-cause dementia, including (1) 
insidious onset; (2) clear history of worsening of cognition by report or observation; and (3) 
prominent cognitive deficits that include amnestic presentation and/or deficits in language 
presentation, visuospatial presentation, and executive function. The inclusion and exclusion criteria 
were detailed in D10.1: H – Requirement No. 1. 
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3.1.2 MEG data 

MEG data were acquired using a 306-channel (102 magnetometers, 204 planar gradiometers) 
Vectorview MEG system (Elekta Neuromag Oy, Helsinki, Finland) installed inside a magnetically 
shielded room (VacuumSchmelze GmbH, Hanau, Germany) at the Center for Biomedical Technology 
(Madrid, Spain). During the data acquisition, the participants rested awake with their eyes closed, 
and a total of five minutes of MEG data were recorded. Before the data acquisition, the participants’ 
head shapes were digitized using a three-dimensional Fastrak digitizer (Polhemus, Colchester, 
Vermont). Specifically, three fiducial points were registered (nasion, right preauricular, and left 
preauricular), as well as an outline of approximately 400 scalp points. Four head position indicator 
(HPI) coils were applied to the participant’s scalp. To record eye blinks and ocular movements, two 
electrooculogram (EOG) electrodes were placed above and below the left eye. To record the cardiac 
activity, two electrocardiogram (EKG) electrodes were placed across the chest, forming a diagonal in 
a bipolar setup. MEG raw data were acquired using a sampling rate of 1,000 Hz and an in-line anti-
aliasing band-pass filter between 0.1 and 330 Hz. Afterward, the MEG data were processed offline 
with the temporospatial filtering algorithm (tSSS) as implemented in MAXFILTER (Elekta Neuromag 
Oy, Helsinki, Finland) with a correlation limit of 0.9 and a window length of 10 s. 
 

3.1.3 MRI data 

Three-dimensional T1-weighted MRI images (T1-MRI) were acquired for each participant within a 
month after the MEG session, using a 1.5 T MRI scanner (GE Healthcare, Chicago, Illinois) with a high-
resolution antenna and a homogenization PURE filter (fast spoiled gradient-echo sequence, with 
parameters: repetition time/echo time/inversion time: 11.2/4.2/450 ms; flip angle: 12°; slice 
thickness: 1 mm, 256×256 matrix, and field of view: 256 mm). 
Three-dimensional diffusion-weighted MRI images (dw-MRI) were acquired with a single-shot echo-
planar imaging sequence (with parameters: echo time/repetition time: 96.1/12,000 ms; NEX 3 for 
increasing the SNR; slice thickness: 2.4 mm, 128×128 matrix, and field of view: 30.7 cm), yielding an 
isotropic voxel of 2.4 mm; 1 image with no diffusion sensitization (i.e., T2-weighted b0 image); and 
25 dw-MRI (b = 900 s/mm2). 
 

3.1.4 Neuropsychological data 

The following domains were exhaustively assessed for each participant: (1) memory, (2) language, 
(3) executive function, (4) cognitive status, (5) subjective memory, and (6) functional capacity and 
mood. Memory was assessed with the Digit Span Test (forward and backward) of the Wechsler 
Memory Scale-III-R (Spanish version), and the Texts of Verbal Memory and the Word List of the 
Wechsler Memory Scale-III. Language function was assessed with the Boston Naming Test and the 
Phonemic and Semantic Fluency Tests (Controlled Oral Word Association Test). Executive function 
was assessed with the Trail Making Test parts A and B. General cognitive status was assessed with 
the Mini-Mental State Examination. Memory in everyday life was assessed with the Rivermead 
Behavioral Memory Test, and mood was assessed with the Geriatric Depression Scale-Short Form. 
 

3.1.5 Database implementation 

The full-cohort MEG database is available upon request at the URL https://vbc.ucm.es. Following the 
Brain Imaging Data Structure (BIDS) standard (Niso et al., 2017), the data was structured in a root 
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folder and a derivatives subfolder comprising the derived data generated by the different processing 
pipelines (see Section – Workflows). In addition, an extra folder (derivatives/TVB) includes a set of 
TVB-compliant structural data, the time-series associated with the ROIs, and the dynamic features 
provided for TVB-model validation. 
 

3.2 Workflows 

3.2.1 MEG 

The developed pipelines encompass the three primary components of MEG analysis, namely: (1) the 
pre-processing of raw MEG recordings (pre-processing pipeline); (2) the MEG source reconstruction 
(source-reconstruction pipeline); and (3) the extraction of the individual dynamic features (analysis 
pipeline). All the scripts are executed within the MATLAB environment (Mathworks, Inc.) and 
incorporate functions from: 
- Fieldtrip software toolbox for MEG analysis (Oostenveld et al., 2011); 

https://www.fieldtriptoolbox.org/. 
- FreeSurfer software (Dale, Fischl, & Sereno, 1999); https://surfer.nmr.mgh.harvard.edu/. 
- SPM12 software; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/. 
- Neurophysiological Biomarker toolbox; https://www.nitrc.org/projects/nbt/. 
 
Each pipeline comprises several modules designed for sequential execution. The source-
reconstruction and analysis pipelines run automatically and require minimal input from the end user. 
The pre-processing pipeline necessitates a higher degree of user input and decision-making, 
particularly in relation to quality control. The individual outputs are finally converted to BIDS 
formatting. The UCM and UH pipelines present slight variations that are described in the text. To 
access either version email requests can be sent to fmaestuu@ucm.es (UCM version) and 
matias.palva@helsinki.fi (UH version). 
The pre-processing pipeline aims to achieve automatic artifact extraction, artifact review, 
independent component (IC) extraction and labeling, quality control, and data segmentation. This 
pipeline is specifically designed to perform the following tasks (see Table 2 for a summary): 

1. Automatic artifact extraction (s1_artifactExtraction): Fieldtrip’s code is used to create a 
temporal definition for three types of artifacts (ocular, muscular, and system artifacts). 

2. Artifact review (s2_artifactReview): The user corrects for potential misidentifications. If 
available, EOG data is displayed alongside MEG data to facilitate the detection of ocular 
artifacts. 

3. ICs extraction and labeling (s3_extractIC, s4_selectArtifactsIC, and s6_markEKGlead): A blind 
source separation algorithm based on second-order statistics is used to extract the mixing 
matrix. Then, the ICs are visually inspected to identify EOG and EKG activity. EOG artifacts 
are highlighted to facilitate EOG-IC identification. The topographic distribution of the ICs is 
also displayed in the GUI.  

4. Quality control: Optional quality-control modules are used to, e.g., recuperate data 
segments previously labeled as EOG artifacts after EOG-ICs identification. 

5. Data segmentation or data interpolation (s7_saveSegments): (UCM) The clean data is 
segmented into 4-second epochs after discarding the artifacts and saved. (UH) The artifacts 
are interpolated to preserve the original-length of the recordings and the clean data is saved. 
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Table 2. Main modules of the data-preprocessing pipeline, objectives, data inputs and outputs, and user requirements. 

Module Objective Data input Data output User input 

s1_artifactExtraction Performs automatic artifact 
detection. 

MEG raw/tSSS data Auto artifact definition Auto 

s2_artifactReview Reviews the automatic artifact 
detection. Quality control. 

MEG raw/tSSS data 
Auto artifact definition 

User-corrected artifact 
definition 

Yes 

s3_extractIC Performs Independent Component 
Analysis (ICA). 

MEG raw/tSSS data 
User-corrected artifact 
definition 

Mixing/unmixing matrices Auto 

s4_selectArtifactsIC Identifies EOG and EKG 
independent components (ICs). 

MEG raw/tSSS data 
Mixing/unmixing 
matrices 

ICs definition Yes 

s5_extractSketch Builds the trial definition. Identifies 
clean trials and clean ICs. 

MEG raw/tSSS data 
User-corrected artifact 
definition 
ICs definition 

Trial definition 
Trial classification 
(clean/noisy) 
ICs classification 
(clean/noisy/EOG/EKG) 

Auto 

s6_markEKGlead  Processes the EKG components. Trial definition 
Trial classification 
(clean/noisy) 
ICs classification 
(clean/noisy/EOG/EKG) 

EKG lead IC Yes 

s7_saveSegments Saves the clean sensor-space data. 
Removes/interpolates the 
artifacted trials and deals with the 
noisy/EOG/EKG ICs. 

Trial definition 
Trial classification 
(clean/noisy) 
ICs classification 
(clean/noisy/EOG/EKG) 
EKG lead IC. 

 Clean sensor-space data Auto 

 

The source-reconstruction pipeline aims to achieve MEG source-reconstruction. This pipeline is 
specifically designed to perform the following tasks (see Table 3. for a summary): 

1. Fiducial identification, segmentation, and mask generation (s1_loadMRI, s2_segmentMRI, 
and s3_createMasks): Three fiducial points (nasion, right preauricular, left preauricular) and 
three SPM landmarks are identified in the T1-weighted MRI. The software SPM12 is used to 
segment the MRI data into probability maps for the different brain tissues (white matter 
(WM), gray matter (GM), cerebrospinal fluid (CSF), and bone). Following the tissue 
segmentation, we obtain masks for the brain, the skull, and the scalp. 

2. Head model (s4_createMeshGrid and s5_createHeadModel): This task builds a single-shell 
head model with a unique boundary defined by the inner skull. 

3. Source model (s4_createMeshGrid): (UCM) A source model of 2,459 sources placed in a 
homogeneous grid of 1 cm in a Montreal Neurological Institute (MNI) template is converted 
to subject space by an affine transformation. (UH) The white-matter surface is reconstructed 
using FreeSurfer. The dipoles are defined at the vertices of the white-matter surface with 
around 7mm inter-dipole distance. 

4. Co-registration (s6_realignMRI): Between the MEG and the T1-MRI. 
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5. Forward problem (s7_createLeadfield): Leadfield matrix calculation. 
6. Inverse problem (s8_getSources): (UCM) Source reconstruction is performed using 

beamforming. The beamformer filters are obtained for each classical frequency band (𝜃	[4 - 
8] Hz, 𝛼	[8 - 12] Hz, 𝛽	[12 - 30] Hz, 𝛾	[30 - 45] Hz, and broadband [2 - 45] Hz) using the 
previously computed leadfield, the epoch-averaged covariance matrix, and a 20% 
regularization factor. (UH) Source reconstruction is performed using Fieldtrip’s minimum 
norm estimates (MNE) algorithm. The inverse operator is obtained using the previously 
computed leadfield, the covariance matrix, and a 0.11 regularization factor. Next, using the 
forward and inverse operators alongside simulated data, fidelity weights for each dipole 
(source) are estimated to avoid the erroneous estimation of source time-series. Then, the 
fidelity-weighted source time-series are parcellated into the Schaefer’s 400 parcels time-
series. 

 
Table 3. Main modules of the source-reconstruction pipeline, objectives, data inputs and outputs, and user 

requirements. 

Module Objective Data input Data output User input 

s1_loadMRI Loads the raw MRI file. Saves the 
fiducial markers and the SPM 
landmarks coordinates (user input). 

Raw MRI file Formatted MRI file 
Fiducial markers and SPM 
landmark coordinates 

Yes 

s2_segmentMRI Obtains the probability maps for 
the different brain tissues (WM, 
GM, CSF, and bone). Uses SPM12. 

Formatted MRI file 
SPM landmark 
coordinates 

Probability maps for the 
different brain tissues 

Auto 

s3_createMasks Uses the probability maps to create 
masks (logicals) for the different 
brain tissues. 

Formatted MRI file 
Probability maps for the 
different brain tissues 

Scalp, brain, and skull 
masks 

Auto 

s4_createMeshGrid Builds the mesh that delimits the 
brain surface using the single-shell 
method (Nolte, 2003) and 10,000 
vertices. 
Warps the MNI source template to 
the individual MRI. 

Formatted MRI file 
Scalp, brain, and skull 
masks 

Single-shell mesh 
Warped source model 

Auto 

s5_createHeadModel Creates the head model. Single-shell mesh Head model Auto 

s6_realignMRI Uses the fiducial landmarks to 
realign the head model relative to 
the sensor positions. 

Head model 
Head digitization 
Fiducial markers 

Realigned head model Yes 

s7_createLeadfield Calculates the leadfield matrix. Head model 
Source model 

Leadfield matrix Auto 

s8_getSources Solves the inverse problem and 
calculates the source-space time-
series (using beamforming (UCM) 
or minimum-norm estimates (MNE) 
(UH)). 

Clean sensor-space data 
Leadfield matrix 

Beamformer filters (UCM) 
MNE solution (UH) 

Auto 
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The analysis pipeline provides an analysis array aimed to equip partners with the relevant features 
to support personalized TVB parameter validation. A complete description of the analysis array can 
be found in Deliverable 3.7. The main modules of the analysis pipeline used in the present deliverable 
are summarized in Table 4. 
 

Table 4. Main modules of the analysis  pipeline, objectives, data inputs and outputs, and user requirements. 

Module Objective Data input Data output User input 

s1_getConnectivityPLV Calculates the sources×sources 
and the ROIs×ROIs FC 
connectivity matrix using the 
hypothesis of phase synchrony 
and the phase-locking value 
(PLV). 

Clean sensor-space data 
Beamformer filters 

PLV matrix. Auto 
Input 
parameters 

s2_getConnectivityCIPLV Calculates the sources×sources 
and the ROIs×ROIs FC 
connectivity matrix using the 
hypothesis of phase synchrony 
and the corrected imaginary 
phase-locking value (ciPLV). 

Clean sensor-space data 
Beamformer filters 

ciPLV matrix. Auto 
Input 
parameters 

s3_getDFA Calculates the DFA exponents. Source-space data Fluctuation function 
DFA exponents 
 

Auto 
Input 
parameters 

S4_getfEI Calculates the fE/I. Source-space data fE/I Auto 
Input 
parameters 

 
 

 
 

Figure 1. Summary of the MEG workflows. 
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Figure 2.  Workflow for the pre-processing and source-reconstruction pipelines and BIDS outputs that can be found in 
the full-cohort MEG database. 

3.2.2 MRI 

The T1-weighted images were processed using FreeSurfer v.6.0 recon-all function that includes 
motion correction, intensity non-uniformity correction, intensity normalization, segmentation of the 
different brain tissues, and constructs a cortical surface mesh for each image. This cortical surface 
mesh is inflated to a sphere and registered to a common surface-space. An anatomical atlas was 
used to assign neuroanatomical labels to each native brain voxel. Lastly, the T1-space cortical atlas 
was registered to each subject’s dw-MRI space using FSL flirt with 7 degrees of freedom. 
dw-MRI data was processed using the MRtrix3 software (version 3.0.2) and included the following 
steps: dw-MRI denoising, Gibbs ringing artifacts removal, eddy current and movement correction, 
dw-MRI bias field correction, generation of a tissue-type segmented image for anatomically 
constrained tractography, and the estimation of the WM, GM, and CSF response functions. The 
single-Shell 3-Tissue CSD (SS3T-CSD) method was applied to obtain WM-like fiber orientation 
distributions as well as GM-like and CSF-like compartments in all voxels using the MRtrix3Tissue fork 
(https://3Tissue.github.io). Finally, we performed multi-tissue informed log-domain intensity 
normalization, and the generation of the tractogram (25 million streamlines, maximum tract length 
= 250, FA cutoff = 0.06, dynamical seeding). 
 
 
 
3.3 MEG Derivatives 

3.3.1 Computation of functional connectivity 
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Functional connectivity (FC) was estimated under the hypothesis of phase synchronization using the 
phase-locking value (PLV) algorithm (Lachaux et al. 1999), which demonstrates high reliability across 
MEG recordings (Garcés et al. 2016). The PLV values between each pair of sources were calculated 
using the source-reconstructed time-series as the input for all the classical frequency bands. To 
reduce the dimensionality of the FC matrix, the PLV values were averaged following the Automated 
Anatomical Labeling/Harvard-Oxford/Schaefer parcellation to obtain, for each parcellation scheme, 
a single PLV value between each pair of regions. 
Despite being widely popular, the PLV encounters a significant limitation due to its susceptibility to 
volume conduction and source-leakage effects. By considering the strong association between PLV 
and coherency, it is possible to derive a PLV-based FC measure that is insensitive to volume 
conduction (given that the imaginary part of coherency discards zero-lag connectivity and thus is 
insensitive to volume conduction). This particular formulation is referred to as corrected imaginary 
PLV (ciPLV), and its definition can be found in the work of Bruña et al. (2018). ciPLV was estimated in 
the classical frequency bands using the source-reconstructed time-series as the input and averaged 
following the above-mentioned parcellation schemes. 
 
3.3.2 Computation of criticality markers 

3.3.2.1 Long-range temporal correlations (LRTCs) 

Linear detrended fluctuation analysis (DFA) has been widely used as a quantitative measure of LRTCs 
in narrow-band time-series irrespective of whether they arise from stationary processes or not 
(Peng, Havlin, Stanley, & Goldberger, 1995). The resulting scaling exponent α is a measure of the 
autocorrelation properties of a signal, i.e., α < 0.5: anti-correlated, α ≈ 0.5: uncorrelated, and 0.5 < α 
< 1: correlated.  
The DFA exponents were calculated as in (J. M. Palva et al., 2013; Zhigalov et al., 2015). For each 
participant, scaling exponents were estimated from parcel time-series, which were narrow-band 
filtered using a bank of 32 Morlet wavelets (width parameter m = 5) at log-equidistant spacing within 
a range of 2−90 Hz. The fitting interval included window sizes from 2−25 seconds (as opposed to 
0.08−120 seconds) to avoid the influence of filtering artifacts on the scaling exponent estimation. 
The measures have been extracted for each wavelet frequency and parcel.  
 
3.3.2.2 Functional excitation-inhibition ratio (fE/I)  

Custom MATLAB scripts were implemented to compute fE/I as in (Bruining et al., 2020) for each 
parcel time-series: (i) parcel time-series were wavelet-filtered into 32 narrow-band signals as 
described above and their amplitude envelopes were extracted; (ii) the cumulative sum of each 
(demeaned) signal was calculated (the signal profile); (iii) the signal profile was divided by its mean 
amplitude in fixed windows of 40 cycles, to remove the effect of the original signal magnitude; (iv) 
each normalized signal profile window was linearly detrended; (v) the standard deviation was 
calculated for each window to get the windowed-normalized fluctuation function w_nF(t); (vi) mean 
windowed amplitudes (wAmp) were estimated (as in iii); (vii) the Pearson correlation between 
w_nF(t) and wAmp was calculated, that is, corr(w_nF(t),wAmp); and (viii) fE/I values were quantified 
as fE/I=1-corr(w_nF(t),wAmp), so that fE/I = 1 indicates balanced E/I, fE/I < 1 indicates dominant 
inhibition, and fE/I > 1 indicates dominant excitation. 
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3.4 Results 

3.4.1 Attenuation of LRTCs dissociates early SCD and MCI stages 
Mean DFA exponents were obtained by averaging the individual DFA exponents across all parcels 
separately for the NC, SCD, and MCI groups and showed a broad peak from alpha to beta-frequencies 
(7−30 Hz) (Fig. 3a).  We tested for significant group differences in mean DFA exponents (Fig. 3b) with 
non-parametric statistics. Both SCD and MCI participants showed lower DFA exponents relative to 
the NC group from alpha to low-gamma frequencies (7−40 Hz) (Fig. 3a, Kruskal-Wallis test, p < 0.05; 
False Discovery Rate (FDR) corrected across frequencies). Additional post hoc tests revealed a salient 
progressive attenuation of LRTCs with disease development, with significant differences in DFA 
exponents between the NC and SCD groups (hereafter, NC-SCD) in the alpha-band (7−12 Hz), and 
between the SCD and MCI groups (SCD-MCI) in the beta-band (12−22 Hz) (Fig. 3b-c). We next 
examined the regional specificity of this measure by testing  

Figure 3. LRTCs dissociate NC, SCD and MCI cohorts. a, Mean DFA exponent, averaged across parcels and within cohorts. 
Shaded areas represent bootstrapped (n=10,000) 95% confidence intervals. Red diamonds highlight the frequencies with 
significant differences (Kruskal-Wallis test, p<0.05, FDR corrected). b, Pairwise differences between cohorts in averaged 
DFA exponents. Red diamonds highlight significant differences. c, Density plots (left) for DFA exponents averaged within 
alpha (7-12 Hz) and beta  (12-22 Hz) bands where SCD-NC and SCD-MCI differences were found within cohorts, 
respectively. The black-filled dot denotes median, and the line length represents the standard deviation. Individual 
participants’ DFA exponents (right) with an overlaid boxplot denoting the first, median and third quartiles, and the 
whisker lengths representing 1.5 times the interquartile range.  d, Percentage of parcels showing statistically significant 
differences (Wilcoxon rank-sum test, p<0.05, FDR (Q=20%) corrected) in DFA exponents between NC-SCD, NC-MCI, and 
SCD-MCI. e, Differences between cohorts at the brain functional networks in the alpha and beta bands. 
 
pairwise group differences in DFA exponents at the parcel level at an anatomical resolution of 400 
parcels in total. In line with the whole-brain results, differences in DFA exponents between the NC 
and MCI groups (hereafter, NC-MCI) were extensive and found in nearly all parcels in the alpha and 
beta bands (Fig. 3d). The NC-SCD and SCD-MCI differences showed expansion of pathological 
dynamics across disease progression, so that the early NC-SCD deterioration in LRTCs occurred only 
in the alpha-band, while the progressing SCD-MCI differences expanded to the beta band, together 
overlapping with the observed NC-MCI differences (Fig. 3d). Region-wise, NC-MCI differences were 
widespread and observed for all the brain functional systems (Fig. 3e), while NC-SCD and SCD-MCI 
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differences showed regional specificity: NC-SCD alpha-band differences were visible in the 
frontoparietal network (FPN), dorsal attentional network (DAN), limbic network (Lim), and visual 
system (Vis), whereas SCD-MCI beta-band differences were localized within the DAN, Lim, and Vis 
networks (Fig. 3e). 

3.4.2 Elevated excitation characterizes disease progression 
Alterations in the E/I ratio have been proposed to be a key driving factor for brain network 
dysfunction in AD (Busche & Konnerth, 2016). Also, theoretical models of critical brain dynamics 
suggest that maximum (as opposed to dampened) neural fluctuations occur in the critical (as 
opposed to the sub- or supercritical) regime  

 

 

Fig. 4. fE/I balance change across disease 
trajectory a, Hypothesised dependence of DFA 
exponents on the brain critical state and the E/I 
balance in the classical brain criticality framework. 
Brain operating point is regulated by the E/I 
balance.  DFA exponents peak at the critical 
transition point (inset: critical-like; green dots, no-
linear dependence) at balanced E/I. The subcritical 
side (inset: purple dots, inhibition- dominant, 
positive-linear dependence) is characterized by 
stronger inhibition and the supercritical side (inset: 
red dots, excitation-dominant, negative-linear 
dependence) by stronger excitation. Quadratic 
dependence appears for all points across regimes b, 
Averaged mean fE/I values for each cohort (blue 
=NC, green = SCD, and orange = MCI) with shaded 
areas describing 95% confidence interval calculated 
using bootstrapping (n=10,000) method. 
Significance as in (Fig. 1b). c, Averaged pairwise 
differences between cohorts in the mean fE/I with 
95% confidence intervals in bright and shaded 
colors, respectively. The diamonds mark the 
frequencies with significant (p<0.05; Kruskal-Wallis, 
FDR corrected) differences. d, Percentage of parcels 
showing significant differences between cohorts in 
fE/I. Shaded grey areas highlight frequencies in the 
alpha and beta bands. 

(Cocchi et al., 2017; S. Palva & Palva, 2018). Hence, scale-free behavior and LRTCs should peak in the 
critical regime, characterized by conditions of balanced E/I, and decrease in the subcritical and 
supercritical phases, associated with excessive net inhibition and excitation, respectively (Fig. 4a).  
 
To elucidate whether altered E/I balance would characterize SCD and MCI using fE/I measure, we 
found significant (Kruskal-Wallis test, p < 0.05; FDR corrected) group differences in mean fE/I in 
alpha-to-gamma frequencies (Fig. 4b), similar to our findings in DFA exponents (Fig. 3b). Additional 
post hoc tests showed that these differences were mainly due to a significant increase of fE/I in the 
MCI relative to the NC and SCD stages. At the parcel level, we found large NC-MCI and SCD-MCI 
differences, although not as robust as in DFA analysis. SCD-MCI differences were more widespread, 
whereas NC-SCD differences were overall weak (Fig. 4e), supporting the idea that E/I alterations echo 
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disease progression and might represent a pathway of ongoing network disruption beginning at the 
SCD stage. 
 

4. Computational models 

 

4.1 Hierarchical Kuramoto model 
 
In the classical Kuramoto model a population is defined as multiple coupled all-to-all oscillators 
mediated by a sinusoidal interaction function with a given frequency for each oscillator 

𝜃! 	= 	𝜔! 	+ 	
1
𝑁
,𝐾!"

#

"$%

𝑠𝑖𝑛(𝜃" − 𝜃!) 

Where N is total number of oscillators, 𝜃! 	is a phase, 𝜔! 	 is a frequency of i-th oscillator and 𝐾!"   is 
the coupling parameter between i-th and j-th oscillators.  
 
However, the model represents the basic dynamics and for the final analysis data is often aggregated 
across all oscillators e.g., by computing a model order defined as absolute value of average oscillator 
phase. This approach makes comparison with the real data a challenging task. To overcome this, we 
introduced a hierarchical extension of the Kuramoto model with multiple nodes where each node 
may correspond to a recording from a single brain area or electrode. 
Each node is made of multiple oscillators and behavior of each oscillator could be explained in three 
components: 

𝜃! 	= 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	 + 	𝑁𝑜𝑖𝑠𝑒	 

where 𝑁𝑎𝑡𝑢𝑟𝑎𝑙	 = 	𝜔!  or the central frequency of an oscillator,  

	𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙	 = 	&
#
∑ 𝑠𝑖𝑛(𝜙! − 𝜙")#
"$%   

where the phase of each oscillator is shifted towards the value, which is calculated as the average of 
phase differences of oscillators in the same node, 

	𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙	 = 	 𝐿!" ∑ 𝑊!"
'
"$% 𝑠𝑖𝑛(𝜙! −𝛷")  

where the phase of each oscillator is compared to an average phase of other nodes. Thus 𝐾!  is an 
internal coupling coefficient (local control parameter) between i-th node and 𝐿!"  is a coupling 
coefficient between i-th and j-th nodes (global control parameter), and Noise which is a random 
Gaussian phase distortion with mean of 0 and given scale. 

Later, we aggregated signals for each node by averaging phase of all oscillators from the same node 
thus one is able to match a model's node to a single brain area or any other source of LFP recordings. 
 

4.2 Model statistics 

One of the basic statistics of a model is its order - measurement of oscillators synchrony inside each 
node defined as: 

𝑅	 = 	 D
1
𝑁
,𝜃!

#

!$%

D 
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To estimate inter-areal phase interactions, we computed synchrony metrics for each pair of nodes, 
we used the phase locking value (PLV), obtained as the absolute value of complex PLV 

𝑐𝑃𝐿𝑉	 =
1
𝑁
,

𝑥(𝑡) ∗
|𝑥(𝑡)|

𝑦(𝑡)
|𝑦(𝑡)|

#

($%

	 

 
LRTCs were quantified using DFA, which is computed using a timeseries of a model's order for 
simulated data and, for corresponding real data, the amplitude of a narrow-band filtered MEG data. 
To speed up the analysis we computed DFA in the Fourier domain (Nolte el al., 2019). The 
fluctuations were fitted with a robust linear regression with a bisquare weight function to obtain the 
DFA exponents, all with negligible fit error.  
For all simulations in the paper, we used a model with 200 nodes to match the Schaefer parcellation 
of functional brain areas (Schaefer et al., 2018). We used structural connectome to derive coupling 
coefficients between different nodes of the model and central frequencies of oscillators were set as 
random value from the Gaussian distribution with mean of 10Hz and variance of 1.  
 

4.3 Model fitting 
 
Two types of metrics have been used for model fitting: FC (i.e., the PLV) and LRTC. The former, FC, 
grows monotonically as a function of coupling strength between nodes and therefore shows the 
gradient direction. The latter, LRTCs behave as a unimodal function with peak in the critical regime 
and we can approximate it using the quadratic function and optimize it as a function of the local 
control parameter. 
Thus, fitting of coupling strength between nodes is based on PLV loss between target metric and 
model metric and the sign of difference shows the direction of gradient as well. Equation shows the 
gradient calculation:  

𝑔𝑟𝑎𝑑	 = 	)*+,	∗	/011
#!"#$%

  

where PLV’ is a derivative of PLV 
 
The dependency of DFA over K was assumed as an inverted parabola where the critical state is an 
extremum of the DFA graph over. Thus, the derivative of a parabola is used for fitting. To get the 
direction of the gradient, the sign of the PLV difference was used. Equation shows the gradient 
calculation:  

𝑔𝑟𝑎𝑑	 = 	23	∗	/011	∗	4!567(!08	∗	&
#!"#$%

  

The learning rate was optimized with RMSprop dividing coefficient by the root of a squared gradient, 
where the squared gradient is: 

𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑔𝑟𝑎𝑑	 = 	0.9	 ∗ 	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑔𝑟𝑎𝑑	 + 	0.1	 ∗ 𝑔𝑟𝑎𝑑3 

where 0.9 is the default value for the moving average parameter. 
Thus the equation for the parameter update:  

𝑃	 = 	𝑃	 −	
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒
Q𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑔𝑟𝑎𝑑	

∗ 𝑔𝑟𝑎𝑑 
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4.4 Integration of the brain dynamics measures into the database for model 
fitting 
Following the BIDS standard, the data is structured in a main folder (VBC_Madrid_BIDS) and a 
derivatives subfolder comprising the derived data generated by the different processing pipelines 
(derivatives/pipeline preprocessing and derivatives/pipeline sources). In addition, an extra folder 
(derivatives/TVB) has been added to the database for computational modeling purposes (see 
deliverable 3.5). The latter, so far composed of a set of TVB-compliant structural data and the time-
series associated with the ROIs, has been updated with brain dynamics measures to serve as a 
compact tool for model fitting (Fig.5). 
 

 
Fig. 5. Scheme of the simulation procedure and model fitting. 

 

4.5 Results  
 
Firstly, we investigated how both parameters affect model dynamics. We varied K and L parameters 
and computed model standard deviation, LRTC and synchrony between nodes for each combination 
of control parameters. 
We found that increasing both global and local parameters lead to increase in model synchrony 
between nodes where low control parameters cause almost no inter and intra synchrony while high 
values lead the model to almost full synchronization. DFA and standard deviation shows a diagonal 
critical ridge indicating the model order transition period. 
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Fig. 6. Model metrics. The dependency of PLV and DFA metrics over local control parameter K. The distribution of DFA, 
PLV, and STD over the combination of control parameters. 

4.5.1 Fitting to a predefined phenotype 
At first, we fit a model to the artificial data with known properties, simulated ground truth. For that 
purpose, we generated several phenotypes by changing baseline parameters such as structural 
connectome or vector of K values, simulated time series using phenotype model parameters and fit 
the model using starting parameters to it. 
We found that after those alterations we are able to reproduce the model activity with high similarity 
(Pearson’s correlation coefficient ~ 0.8) and to restore the phenotype parameters using both FC and 
LRTC as the target variable.   
Figure 7 shows an example of the fitting Vis phenotype Le matrix based on the PLV metric. Le matrix 
alternate weights of structural connectome according to target functional areas (Visual network). 
The ground truth (GT) is simulated using connectome multiplied by phenotype target weights (Figure 
7). There are 25 runs of the fitting thus the plots of fitted PLV and fitted weights show the average 
value. The correlation between target and fitted metrics raised to 0.8 during fitting steps on average. 
We can notice that the changes in fitted weights are similar to the target weights. 
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Fig. 7. PLV fitting example. The fitting of Vis phenotype. The target PLV of the simulated GT where connectome was 
multiplied by phenotype target weights. The fitted PLV and fitted weights show the average value of 25 fitting runs. 

We used the detrended fluctuation analysis (DFA) which analyzes time-series of a signal for individual 
K fitting. Figure 8 shows an example of the fitting Default phenotype. For the nodes in the target 
area, the coupling coefficient of nth node (Kn) was higher, and the mean of all nodes (Kns) was 1. Each 
fitting run consists of 25 steps, and the correlation between target DFA and fitted DFA raised from 
0.63 to 0.83 during these steps on average. After fitting, individual Kns demonstrate a similar increase 
in target areas (Figure 8).  
 

 
Fig. 8. DFA fitting example. The fitting of Default phenotype. Kns increase in the target nodes of Default network, mean 
of Kns for all nodes is 1. Fitted Kns demonstrate increase at the same nodes. There are 25 runs of the fitting thus the plots 
show the mean line and the spread is a standard deviation. The fitted DFA is aligned with the target DFA. The Pearson 
correlation coefficient rises up to 0.83 at average. 
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4.5.2 Fitting to a real data  
As the next step we derived digital twins - a set of models made to reproduce dynamics of the real 
data. We filtered MEG data into equally log-spaced frequencies from 2Hz to 100Hz, computed wPLI, 
DFA and fit the model for the 10Hz frequency. 
We found that after fitting the model is able to reproduce dynamics with fairly high similarity 
(intraclass correlation (ICC) = 0.47 for PLV and ICC = 0.4 for DFA, Figure 9). For the real data fitting, 
we use dual-gradient-descent model fitting to combine both gradients for global and local 
parameters. In Figure 9, the fitted DFA demonstrates a similar increase in the occipital lobe to the 
real DFA with ICC 0.4. The fitted PLV shows the increase in the synchronization between nodes 
similarly to the real wPLI after weight fitting and shows ICC 0.47.  

 
Fig. 9. Fitting to the real data example. The distribution of the real DFA values over brain areas. The fitted DFA 
demonstrates intraclass correlation (ICC) equal to 0.4 for DFA. The distribution of the fitted coefficients over brain areas. 
The real wPLI and the fitted PLV that demonstrates ICC equal to 0.47. The fitted weights for the model to demonstrate 
similar PLV. 

 

 

5. Conclusions 

In this document we detail the workflow adopted for the final computation of brain dynamics 
measures of the FDMC dataset, and discuss their importance in characterizing early stages of 
Alzheimer’s disease.  
The FDMC dataset, arranged using the BIDS standard to foster interoperability and to address the 
heterogeneity of data organization, has been importantly extended to allow the easy integration 
with computational models of large-scale brain dynamics. Specifically, an extra folder 
(derivatives/TVB), which has been previously inserted in the database for computational modeling 
purposes, has now been updated with brain dynamics measures to serve as a compact tool for model 
fitting. 
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We show how the attenuation of LRTCs (assessed with DFA) is able to dissociate early SCD and MCI 
stages, and how elevated excitation (assessed with fEI) characterizes disease progression. Further, 
with the aim of computational modeling, we showed that we are able to reproduce the model 
activity with high similarity and to restore the phenotype parameters using both FC and LRTC as the 
target variable.   
Importantly, the subset of TVB-compliant data enables personalized simulations, and the FDMC on 

the whole can be used as a test bench for computational neuroscience methods and machine 

learning within the TVB-Cloud project. 
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6 Glossary	

AD Alzheimer’s disease 

BIDS Brain Imaging Data Structure 

CFS cross-frequency synchrony 

CSF cerebrospinal fluid 

DAN dorsal attentional network 

DFA detrended fluctuation analysis 

dw-MRI diffusion-weighted magnetic resonance imaging 

EOG electrooculogram 

EKG electrocardiogram 

FC functional connectivity 

FDR false discovery rate 

FPN frontoparietal network 

fE/I functional excitation-inhibition ratio 

GM grey matter 

GT ground truth 

HC healthy control 

HPI head position indicator 

IC independent component 

ICA independent component analysis 

Lim limbic network 

LFP local field potential 

LNCyC Laboratory of Cognitive and Computational Neuroscience 

LRTCs long-range temporal correlations 

MCI mild cognitive impairment 

MEG magnetoencephalography 

MNE minimum norm estimates 

MNI Montreal Neurological Institute 

MRI magnetic resonance imaging 

NIA–AA National Institute on Aging–Alzheimer’s Association 



© VirtualBrainCloud | public report 

22 of 24   

NINCDS–ADRDA National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s 
Disease and Related Disorders Association 

PAC phase-ampitude coupling 

PLV phase-locking value 

ciPLV corrected imaginary PLV 

ROI region of interest 

SCD subjective cognitive decline 

SNR signal-to-noise ratio 

tSSS temporal signal space separation 

TVB The Virtual Brain 

UCM Universidad Complutense de Madrid 

UH University of Helsinki 

Vis visual system 

WM white matter 
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