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1. Introduction 
 
The global prevalence of dementia was estimated to be as high as 24 million in 2012, and it is 
predicted to double every 20 years until at least 2040 as the worldwide population ages 
(Francis, Palmer et al. 1999, Mayeux and Stern 2012). Among the causes of dementia, 
Alzheimer's disease (AD) is the most common, reaching about 65% (Sperling, Aisen et al. 2011, 
Robinson, Corrada et al. 2018). While the estimated annual cost of AD treatment solely in the 
U.S. rises to $277 billion, it is expected to exceed $1 trillion by 2050. Thus far, there exists no 
causal treatment for AD (Stefanovski, Triebkorn et al. 2019), while the currently used 
symptomatic treatment options remain insufficient.  
 
TVB-Cloud provides complex computational models that can reproduce the biological 
mechanisms that lead to altered neuronal dynamics and brain function related to 
neurodegeneration. The biological plausibility of such mechanistic generative models is 
increased by informing the models with multimodal data, e.g., electrophysiology, MRI, PET, 
genetics, protein pathways. 
 
The Virtual Brain (TVB, www.thevirtualbrain.org) is an open-source neuroinformatics platform 
for brain network simulation (Ritter, Schirner et al. 2013, Sanz Leon, Knock et al. 2013, Sanz-
Leon, Knock et al. 2015, Stefanovski, Ghani et al. 2016, Solodkin, Zimmermann et al. 2018). 
We recently extended TVB with the option for multi-scale co-simulations (Schirner et al. 2022, 
Meier et al. 2022), i.e. the brain can be simulated at different degrees of detail ranging from 
brain regions to individual neurons – simultaneously, that is some regions are simulated at 
greater detail than others through the co-simulation of different simulation frameworks. This 
interfacing of different neuronal simulators enables to reveal principles of interactions across 
different scales of brain operation.  
 
AD is associated with two hallmark proteins: Amyloid beta (in the following Abeta) and Tau 
the presence of which is defining the diagnosis AD (Jack, Bennett et al. 2018). It remains 
controversial, however, as to which of the two depositing proteins has a driving role upon the 
other, as well as how their interdependence evolves over time (Jack and Holtzman 2013). 
 
Existing computational models have already proven to predict clinical trajectories of AD to a 
certain degree (Peng, An et al. 2016, Beheshti, Demirel et al. 2017, Li, Chan et al. 2017, 
Bhagwat, Viviano et al. 2018, Tabarestani, Aghili et al. 2020). Brain network models have been 
demonstrated to make the link between gene expression, protein function and the 
macroscopic changes in MRI reflecting brain structure and function (Costa-Klein, Ettinger et 
al. 2020). It is stipulated that the simulation inferred neural activity, can disentangle the 
impact of, e.g., genetic variants on neural function, similar to the intermediate phenotype 
approach (Meyer-Lindenberg and Weinberger 2006). By combining molecular pathways and 
large-scale brain simulation, we assess how brain dynamics change when molecular 
interactions change at the micro-scale.  
 
We here provide a summary of workflows that link AD progression models and TVB - 
established in the European consortium The Virtual Brain Cloud (TVB-Cloud; virtualbraincloud-
2020.eu). The approach draws from integrating information from large cohorts of imaging and 
associated data of healthy human individuals and patients with information from knowledge 
bases of biological signaling cascades. While the TVB-Cloud project comprises several 
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technical innovations, including creating a secure environment for sharing and processing 
personal health data (BIH/Charité secure Virtual Research Environment, VRE1), we here focus 
on the workflows created to systematically explore those multiscale interactions from genes 
to behavior to come up with generalizable principles. The outlined workflows comprise:  
 
1) Mapping altered subcellular pathways and signaling cascades to brain structures.  
 
2) Creating mathematical models that describe the influence of those changes on the cellular 
neuronal networks and neuronal population level.  
 
3) Validation of resulting cause-and-effect models.  
 
We demonstrate the use cases of multiscale models in AD that are supported by these 
workflows. While current AD modeling approaches often consider only few selected aspects 
of pathogenesis, in future approaches, the cross-modal integration of several such 
pathological processes in individualized brain models will provide the opportunity to unveil 
the individual person-specific composition of contributing mechanisms enabling precision 
medicine.   
 
 

2. Description of work performed 
 
To link disease progression models of AD – based on molecular disease mechanisms – to TVB,  
we systematically assessed the existing knowledge and literature (Stefanovski, Meier et al. 
2021). 
 
We developed a model of Abeta related excitability changes in AD (Stefanovski, Triebkorn et 
al. 2019) and investigated whether the resulting simulated data can predict disease 
progression, i.e., the diagnostic category describing the cognitive state of the patients 
(Triebkorn, Stefanovski et al. 2022). 
 
Finally, we developed a tool for mapping disease related mechanistic cascades from 
knowledge graphs to anatomical brain locations to further enrich computational brain 
network models with disease specific biological constraints (Stefanovski, Bülau et al. 2021). 
 
 

3. Results 
 
Our review of mechanisms in AD revealed various candidate pathways suitable for disease 
modeling (Figure 1). The two hallmark proteins, Abeta and Tau, are of particular interest, as 
they are (1) involved in most of the disease pathways and (2) assessable with state-of-the-art 
biomarkers. 
 

 
1 https://www.re3data.org/repository/r3d100014127 
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Figure 1: Contributing factors of Alzheimer’s Disease. Figure taken from (Stefanovski, Meier et 

al. 2021) with permission (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/) Of 
significant interest is the holistic implementation of the two hallmark proteins Abeta and Tau 

together with the essential co-factors, in particular, network dysfunction as a large-scale 
feature of the disease.  

 
To assess these proteins' role, we used publicly available data from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI). 
 
Since 2004, ADNI has been collecting and sharing longitudinal, multisite data that comprise 
several AD biomarkers from over 1000 participants between the ages of 55-90. The primary 
aim of ADNI has been to investigate the progression of MCI and early AD employing a 
combination of MRI, PET, and other biological markers, as well as clinical and 
neuropsychological assessments. Results based on ADNI between 2004 and 2018 have been 
summarized elsewhere (Weiner, Aisen et al. 2010, Weiner, Veitch et al. 2012, Weiner, Veitch 
et al. 2015, Weiner, Veitch et al. 2017, Weiner, Veitch et al. 2017, Chandra, Valkimadi et al. 
2019).  
 
We then used an AD model that links Abeta PET to excitability (Stefanovski, Triebkorn et al. 
2019) (Figure 2). 
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Figure 2: Mechanistic model of Alzheimer’s Disease linking Abeta and excitability (Stefanovski, 
Triebkorn et al. 2019). Figure taken from (Triebkorn, Stefanovski et al. 2022) with permission 

(CC BY 4.0, https://creativecommons.org/licenses/by/4.0/). By linking a higher local burden of 
Abeta to an impaired inhibitory function, we reproduced electrophysiological slowing in 

simulated EEG of AD patients. This was linked to a hyperexcitation of particular network hubs, 
although the Abeta distribution did not predominantly affect these hubs. The model, 

therefore, explains a potential mechanism of how Abeta's peripheral distribution can affect 
the brain network's core structures. 

 
As an extension of this study, we investigated whether the simulated (artificial) signals can 
increase predictive accuracy of the disease progression, i.e., whether classification based on 
imaging data that were augmented with simulation features between the three stages 1) AD, 
2) mild cognitive impairment (MCI), and 3) cognitively unimpaired improves. Our work 
demonstrated that a machine-learning classifier based on empirical imaging data (Abeta and 
Tau PET and structural MRI) performed worse than a classifier that considers additionally the 
simulated local field potential (LFP) frequency data (Figure 3). By this, we have demonstrated 
that the disease model in TVB can (1) link microscale mechanisms of AD to the actual clinical 
progression of the disease and (2) potentially outperforms the underlying empirical biomarker 
data by complementing it with additional "hidden variables". 
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Figure 3: Classification performance based on empirical data and simulated data between 

Alzheimer’s Disease, mild cognitive impairment, and healthy controls. Figure modified from 
(Triebkorn, Stefanovski et al. 2022) with permission (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/). While no difference is observable between 
empirical features and simulated features alone, the combined dataset outperforms the 

empirical classification significantly. We used the weighted F1-score to assess the accuracy of 
the classification approach.  

 

4. Conclusion, next steps 
 
We have demonstrated a workflow that links AD progression models and TVB. As a next step, 
we aim to generalize this approach by systematically exploring applications for diseases other 
than AD. 
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