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1. Introduction 
 

The VirtualBrainCloud (TVB-Cloud) has developed a cloud-based brain simulation platform to support 

development, implementation and application of diagnostics and interventions in the context of 

neurodegenerative diseases (NDD). At the core, these workflows make the link between simulated and 

empirical data for each individual patient and relate it to the structural and functional alterations in 

NDD. In this deliverable we provide an instantiation of such a link in the case of Alzheimer’s disease (AD), 

and make available the corresponding individualized TVB human models. 

 

AD is a neurodegenerative disorder characterized by the accumulation of abnormal beta-amyloid (Aβ) 

and hyperphosphorylated Tau (pTau) with specific spatial and temporal pattern of progression (Braak & 

Braak, 1991). This accumulation is accompanied by changes in neuronal activity, among others 

characterized by increased excitability of the affected neuronal populations (Roberson et al., 2007; 

Ittner et al., 2010; DeVos et al., 2013), however disentangling the effects on the network level is 

challenging. Modeling approaches on the whole-brain level (Ghosh et al., 2008; Deco et al., 2011; Sanz 

Leon et al. , 2013; Breakspear, 2017; Bassett et al., 2018) have the capacity to characterize the 

relationship between brain anatomy, physiology and brain dynamics, allowing for exploration of causal 

effects. For AD, the disease driven hyper-activity was explored as link between local and global dynamics 

(Zimmermann et al., 2018; Stefanovski et al., 2021; Triebkorn et al., 2022; Arbabyazd et al., 2021; Patow 

et al., 2022). Here we take the next step, and turn to model inversion as a strategy to infer the hidden 

causes (D’Angelo and Jirsa, 2022) while quantifying the uncertainty and test alternative hypotheses 

within the framework of Bayesian inference (Friston 2010, Hashemi et al., 2020). 

 

The approach presented here (Yalçınkaya et al., 2023) takes full advantage of the individualized whole-

brain modeling and inference framework applied on a cohort level. As a first step, a battery of empirical 

data features is established to capture the changes in the brain structure (e.g. connectivity) and function 

(resting state), in this case lifted from the MRI measurements. Cohort-level trends are then identified 

with respect to these data features, and in the next step, combined with the prior domain knowledge 

to formulate mechanistic hypothesis on how the structural changes express themselves in the brain 

function along the disease trajectory. Next, the identifiability of relevant parameters is evaluated on 

synthetic data with the known ground truth which is produced from the individualized brain models to 

aid the development of reliable inference workflow. And lastly, the workflow is validated on the 

empirical data. The implementation employs the tools and software of the TVB-inversion presented in 

deliverable D8.11. 

 

In this deliverable we present a personalization workflow based on region specific changes related to 

disease progression, here specifically the level of excitability in the limbic system. When mechanistically 

implemented in personalized brain models, simulations demonstrate the causal changes in the 

functional brain dynamics quantified by a battery of metrics, including functional connectivity and 

fluidity (functional connectivity dynamics) of the resting state activity. Empirical data from the Sydney 

Memory and Ageing Study (MAS) were used to derive the cohort-level trends and validate the inference 

workflow. In addition, the individual virtual brain models are made available together with the estimated 

parameters. 

 
1 D8.1: Validated and benchmarked data fitting workflow will be provided as a software for brain model 
personalization 
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2. Partners involved 
AMU 

3. Work performed and Results 
 Empirical data features 

 

The subjects for this study were selected from the Sydney Memory and Aging Study (MAS) (Sachdev et 

al., 2010; Tsang et al., 2013), and stratified into three groups based on cognitive performance: 71 

healthy controls (HC), 32 with amnestic mild cognitive impairment (aMCI), and 12 with Alzheimer’s 

disease (AD). For each of the subjects, magnetic resonance imaging (MRI) data (resting state functional 

MRI (rs-fMRI) and diffusion MRI (dMRI)) were preprocessed and structural connectivity (SC) and region-

average fMRI (BOLD signal) were computed using the AAL Atlas (Zimmerman et al., 2018). On this data, 

a battery of data features was evaluated with respect to differences between healthy and cognitively 

declined subjects. In particular, the functional data features reflected the characteristic changes in 

functional organization of the AD such as the strength of the homotopic functional connectivity (FC) or 

time-variant FC dynamics (FCD). 

 

In terms of structural connectivity, the cognitively declined group showed changes only in the limbic 

network. The whole-brain connectivity, connectivity within and between other lobes, and 

interhemispheric connections didn’t show significant differences. As for the functional changes, we have 

identified a significant decline in homotopic links in the functional connectivity, and also in the limbic 

system decrease in an index of fluidity – the variability of FC in time – derived from FCD. 

 

 

Figure 1: Differences in the structural and functional data features between the healthy 

subjects (Hemp) and cognitively declined (Pemp). For structural connectivity, only the strength of 

connections within the limbic network showed significant difference (A). Out of functional data 

features, there were significant differences in homotopic functional connectivity (B), and fluidity 

(variability) of the functional connectivity dynamics within the limbic system(C). 

 
 Exploration of structural degradation vs functional changes 

 

Individual brain models were constructed using the SC for each subject equipped with a neural mass 

model to govern the activity of each node (Montbrió et al., 2015). Two parameters of the model will be 

relevant in what follows: the excitability 𝜂𝑖 of each node 𝑖, and the scaling of the coupling between the 

nodes with respect to the local dynamics 𝐺. This model is then used to generate simulated resting state 

data on the neural source level, which then were turned into synthetic BOLD signals using the 

appropriate observer model. 

 



© VirtualBrainCloud | public report 

5 of 10   

In this model, we investigated three possible mechanisms for the empirically observed group differences 

in functional data features. We considered following scenarios: a) the personalized connectome for 

each individual subject (Fig 2: A, B), b) personalized connectome with attenuation of within and outgoing 

connections of limbic network in the cognitively declined (Fig 2: C, D), and c) personalized connectomes 

with increased excitability in the limbic regions (Fig 2: E, F). Out of these scenarios, we observed 

significant effect in the functional data features applied to the simulated data only in the case c) where 

excitability of the limbic region was considered. 

 

 

Figure 2: Comparison in-silico of the possible mechanisms underlying the changes in the data 

features between the groups: homotopic FC (A, C, E), and the fluidity of the FCD within the 

limbic system (B, D, F). The first scenario considers only the individualized connectomes (A, B) 

and shows no significant difference. The second scenario adds postsynaptic attenuation, also 

without significant differences across the gradual increase of the effect (C, D). In the third 

scenario the excitability of the limbic nodes is altered on top of the individualized connectomes, 

which leads to significant differences (E, F). 

 
 Parameter identifiability 

 

Simulation-based inference (SBI) allows for Bayesian model inversion using simulated samples from a 

complex model (Cranmer et al., 2020), and was implemented in the TVB-inversion package introduced 

in D8.1. Here we use it to infer the global coupling strength scaling 𝐺 and the excitability 𝜂 of the nodes 

belonging to the limbic system. To validate the approach, we first applied it to the synthetic data with 

known values to demonstrate that SBI can recover accurately the joint posterior distribution of these 

two parameters. 
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Figure 3: Identifiability of the two parameters evaluated on synthetic data with known ground 

truth. Inferred posterior distribution of the global coupling scaling (A) and excitability of the 

limbic regions (B) show shrinkage with respect to the prior distribution (blue), visible also on the 

joint distribution plot (C). The inferred posterior distributions accurately encompass the true 

values (red dots) across the range of the ground truth values (D, E). 

 
 Model personalization 

 

Lastly, we applied the SBI to the empirical data using the model formulation detailed above, homotopic 

FC strength and limbic FCD fluidity index as data features to infer the excitability 𝜂 and global coupling 

strength 𝐺. The resulting inferred values of the parameter 𝜂 were significantly increased for the 

cognitively declined group, whereas 𝐺 showed nonsignificant decrease. The diagnostic values of 

posterior shrinkage for both parameters indicate that the posterior distributions were well-identified.  
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Figure 4: Model parameters inferred for the individual subjects. The inferred values for the 

global coupling scaling (A) didn’t show a significant difference between the groups, while the 

excitability of the limbic regions (B) did.  Both parameters show posterior shrinkage close to 1.0 

for all subjects indicating that the posterior is well defined (C, D). 

 
 TVB dataset 

 

We provide the source data and personalized models as a complete dataset. For each of the 115 

subjects the empirical MRI derivatives are provided, namely the structural connectivity and the resting 

state BOLD time series. Complete model definition shared for the cohort is augmented with 

inidividualized parameters for the global coupling strength 𝐺 and the excitability of the limbic regions 

𝜂. Sample codes demonstrating usage in TVB accompany the data to simplify reuse. 

 

The dataset has the following structure: 

 

├── CHANGES 
├── dataset_description.json 
├── model_parameters.json 
├── parcellation.txt 
├── participants.tsv 
├── README 
├── SC 
│   ├── 0302A 
│   │   └── Structural_matrix_0302A.npz 
│   ... 
├── TS 
│   ├── 0302A 
│   │   ├── Bold_0302A.npz 
│   │   ├── ROICorrelation_0302A.mat 
│   │   ├── ROICorrelation_FisherZ_0302A.mat 
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│   │   └── ROISignals_0302A.mat 
│   ... 
├── TVB 
│   ├── 0302A 
│   │   └── 0302A_connectivity.zip 
│   ... 

Figure 5: Dataset structure overview. 

 

Here the SC folder contains the connectivity matrices for each subject, TS folder contains the BOLD time-

series and connectivity matrices, and the TVB folder provides the connectivity matrices in the TVB file 

format. The individualized model parameters 𝐺 and 𝜂𝑙𝑖𝑚𝑏𝑖𝑐  are given in the participants.tsv table. 

 

The dataset is available upon request. 

 

4. Conclusion, next steps 
 

The results presented here together with the cohort of personalized TVB models offer several directions 

for the next steps. First, the results presented here may be efficiently validated in additional suitable 

cohorts (such as ADNI). Second, to increase findability of the dataset, it will be registered in the publicly 

searchable data indexes such as the EBRAINS Knowledge Graph. And lastly, extending the 

personalization workflow for the AD to other functional modalities such as electro- or magneto-

encephalograms, seems promising given the converging evidence of disrupted excitation-inhibition 

balance as one of the early hallmarks of AD. 
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